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Abstract 

This paper present a the newest and general review of remarkable research accomplish in the area of smart structures 

of control algorithms and reviews papers on active and-semi active control of structures. Active vibration control has been 

introduced and used as one of the effective methods to subdue undesirable vibrations in different systems. successful efficiency 

of each vibration control method is dependent on to accurate design and suitable dynamics selection of the control unit. These 

methods have been Widespread studied in various studies in recent years. Each of these new methods are designed by a specific 

dynamic for a specific system. In this paper, we objective to present some of these recent methods in a brief discussion, and 

accustom the readers with these techniques. In utilization field, Engineers who desire to design suitable vibration controllers in 

distinct scales, from micro- to macro applications, will unquestionably design a further prosperous vibrational controller if they 

be aware moor about resembling procedures, and they can implement the innovations that other scholars have used. 
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1.Introduction  

Active vibration control has been used for 

turn down the unsought vibrations in different 

systems for many years. The problem of unsought 

vibrations levitates from an inherent problem in 

flexible structures that these systems are easily 

vibrated due to the task that they are earmark for, or 

due to severe ambient conditions. This problem is not 

restricted to one system or one design, and a wide 

variety of systems have suffered from this issue. This 

trouble happens when resonant modes of a 

piezoelectric stage are excited when scanning, or when 

a robot arm is moving under discontinuous forces at its 

end, or when a drone is being influenced by the wind 

in a severe weather. The key point in designing a 

successful controller design is first to understand the 

problem very well. When the system is studied and 

analyzed completely, the source of the disturbance is 

known and the model of the system is extracted, the 

engineer needs to find the proper place that an actuator 

can be set, and the way that the feedback can be 

collected. Having a feedback from the vibrating 

structure is essential in designing the active vibration 

controller. Thirdly, they type of available and 

accessible sensors and actuators should be specified. 

Having all these steps taken, it is the controller that 

lastly plays the most important role. The controller 
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which is also known as the software of our system, can 

maximize the performance which can be obtained 

from the hardware of the system. To this end in this 

work, we present a brief review of the recent 

publications in this field. For each technique, we 

provide a brief discussion and provide an overview of 

the design in some cases.  

a smart structure designed as a pre-arranged some of 

members to be actively controlled members. Each 

such member has a sensor, a feedback control device 

[77-79] and an actuator. The sensor measures the 

displacements along the degrees of freedom. The 

feedback control device determines the appropriate 

correction to the uncontrolled response, and the 

actuator applies the required force. Such a system 

consists of three physical components: sensors, 

actuators and a computer. There is also the need for a 

control algorithm that will determine the magnitude of 

control forces at any given time. However, there are 

other strategies and physical systems. The common 

goal in them all is to minimize the vibrations in real 

time. All of them require an effective control 

algorithm. Housner et al. [80] presented a thorough 

review of the field of structural control up to 1996. 

While the topic of smart structures is broader than 

structural control, they reviewed many of the papers 

published on the subject. The scope of the present 

review is limited primarily to journal articles 

published since 1997. A host of engineers are working 

in the area of smart structures including mechanical, 

electrical, materials and structural engineers. As such, 

the field of smart structures can be quite broad and 

multidisciplinary [81-100]. It can also include the 

field of smart materials. 

In order to limit the range of this review within the 

limitations of a journal article, it has been limited 

mostly to civil structures, with only mention of 

relevant papers on smart materials. The review is 

presented in two companion articles. This article is 

allocating to the review of papers published on active 

and semi-active control of structures. It is presented 

forcefully in chronological order. Hybrid control 

systems and control strategies are reviewed in the 

companion paper [101] (this issue). 

  

1.Human perception of structural vibrations 

 
The most repeatedly quote reference for 

human understanding of vibration is by Reiher and 

Meister [137]. The Reiher–Meister scale is based on a 

displacement range of 0.01–10 mm and frequency 

range of 1–100 Hz. The modified Reiher–Meister 

scale was proposed by Lenzen [138] for vibrations due 

to walking impact. For floors with less than 5% critical 

damping, Lenzen suggested the original scale be 

applied if the displacement is increased by a factor of 

ten. Wiss and Parmelee [139] suggested that a constant 

product of frequency and displacement existed for a 

given combination of human response and damping. 

Allen and Rainer [140] developed vibration criteria in 

terms of acceleration and damping intended for quiet 

human occupancies such as residential buildings and 

offices. As damping increases, the steady- state 

response due to walking becomes a series of transient 

responses; resulting in a less significant response. 

Murray [141] suggested a human perception scale for 

required damping as a function of the product of initial 

displacement and frequency, which are the same 

parameters used in the Wiss–Parmelee scale. Allen et 

al. [142] suggested a design procedure for assembly 

floors subjected to rhythmic activities such as dancing 

and exercises. The International Standards 

Organization (ISO) [143] recommends vibration limits 

in terms of acceleration root-mean-squared (rms) and 

frequency. As shown in Fig. 1, a baseline curve is used 

by ISO and different multipliers are used for different 

occupancies. The vibration serviceability criteria for 

floors have been categorized into two broad 

categories. These are: criteria for steel beam and 

concrete slab construction, and wood/lightweight 

construction. The following sections describe the 

research in each category. 

 
2.CONTROL OF STRUCTURES 

 
2.1 PASSIVE CONTROL 
 

In a passive control system to an external 

source of power is not needed for performance system, 

and system using the natural movement of structures 

Provides control forces. [R4] 

If you have installed this system in the structure, there 

is no other possibility to create desired changes and 

moment changes. The effectiveness of the control 
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systems always need a reliable prediction of design 

loads and a detailed numerical model of the physical 

system. Usually in this system may not possible 

improve local control response. It is noted that the use 

of passive control systems because of the simplicity of 

installation and low cost of implementation and 

maintenance of engineering structures are very 

common. [R3] 

 
2.2 ACTUATORS 
 

Controllers have a role in regulating the 

internal parameters of the system state effect of 

changes in foreign forces have served, so by 

recognizing the state of the system during external 

stimulation, the control commands necessary to 

determine the algorithm of the controller and by means 

of appropriate physical devices apply to the system. 

Saleh and Adeli [102-104] present general parallel 

algorithms [105-123] for simultaneous optimization of 

control and structural systems through a judicious 

combination of vectorization on the innermost nested 

loops, microtasking (parallel processing at the outer 

loop level) and macrotasking (parallel processing at 

the function level) on high-performance shared 

memory multiprocessors, such as the CRAY YMP 

machine [124]. Begg and Liu [125] also discuss 

simultaneous optimization of control and structural 

systems. Adeli and Saleh [126] present a 

computational model for active control of large 

structures using distributed actuators subjected to 

various types of dynamic loading, such as impact, 

wind and earthquake loadings. The governing 

differential equations of the open loop and closed loop 

systems are formulated, and a recursive approach is 

presented to compute the response of the structure. A 

major bottleneck in optimal active control of large 

structures with hundreds or thousands of members, 

using distributed actuators and the LQR algorithm, is 

the solution of the complex eigenvalue problem 

encountered in the solution of the resulting Riccati 

equation, as well as the solution of both open loop and 

closed loop systems of equations. Saleh and Adeli 

[127] present robust and efficient parallelvector 

algorithms for solution of the eigenvalue problem of 

an unsymmetrical real matrix using the general 

approach of matrix iterations and exploiting the 

architecture of shared memory supercomputers. The 

algorithms are applied to large matrices including one 

resulting from a 21-story space truss structure. Saleh 

and Adeli [128] present robust and efficient parallel-

vector algorithms for solution of the Riccati equations 

encountered in the structural control problems on 

shared memory multiprocessor machines, such as the 

Cray YMP 8/8128 supercomputer using the 

eigenvector approach. The algorithms are applied to 

three large examples. It is shown that the algorithms 

consistently provide stable results for problems of 

various sizes while other algorithms show numerical 

instability for large problems. Further, it is 

demonstrated that the parallel processing efficiency of 

the parallel-vector algorithms increases with an 

increase in the size of the problem. Hanagan and 

Murray [129] use actuators to reduce floor vibrations 

caused by occupant use. They evaluated the model on 

a full-scale test floor, representative of a typical floor 

in an office building structure. Numerical and physical 

experiments showed that vibrations caused by the 

‘‘heel drop excitation’’ can be reduced effectively. 

Subsequently, Hanagan et al. [130] presented a 

method for optimal placement of actuators and sensors 

for reduction of vibrations in floor systems. During a 

severe event, an actuator may be unable to produce 

enough force to counteract the motion of the structure. 

In this case, the actuator is said to be saturated. 

Agrawal et al. [131] studied the effect of actuator 

saturation on the stability of a structure and found that 

saturated actuators were not detrimental to the 

structural stability of a 2D six-story frame. Djouadi et 

al. [132] use six actuators to control an active 

theoretical tensegrity model consisting of 24 cables, 

six 1.67-m long struts, and six active members under 

random excitation. Reductions in response in the x-, y- 

and z-directions of 97.78%, 97.66%, and 95.37%, 

respectively, were observed for the theoretical 

structure. Asano and Nakagawa [133] consider 

seismic response under a saturation control force 

based on a probabilistic approach. Chase et al. [134] 

discuss an H∞ controller which is stable under actuator 

saturation for single and multiple actuator systems in 

a 2D five-story frame. Saleh and Adeli [135] present 

active control of three-dimensional (3D) irregular 

multistory building structures with curved beams and 

setback, representing both space moment-resisting and 

braced frames using computational models and high-

performance parallel algorithms for the optimal 

control of large structures, as discussed earlier. They 

considered three types of dynamic loading: earthquake 

motions, periodic impulsive horizontal wind loading 

on the exterior joints of the structure, and asymmetric 
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periodic impulsive wind loading on the exterior of the 

structure, intending to model a twister. They also 

investigate different schemes for the placement of 

controllers along the height of the structure. They 

conclude that controllers are more effective in 

unbraced moment-resisting frames than in braced 

frames, and the optimal arrangement for placement of 

controllers depends on the height and aspect ratio of 

the structure. Saleh and Adeli [136] present optimal 

control of adaptive multistory building structures 

subjected to blast loadings. Both internal blast loading 

at different floor levels and external blast loading from 

outside the structure are considered. Results are 

presented for several large regular and irregular 

moment-resisting space frame structures. It is 

demonstrated that through judicious placement of 

controllers and the selection of control forces, the 

response of a building structure can be reduced 

substantially to a fraction of the response of the 

uncontrolled structure. 

 
2.2 INTEGRAL-BASED CONTROLLERS 

Integral controllers are known as the most 

successful prospering for vibration control. These 

procedures have a first order integrator, which 

augment the damping of the system when they are 

used in a closed-loop form. In a study by Szabat and 

Teresa [1], an analysis of control structures for the 

electrical drive system with elastic joint is conducted. 

They have used a proportional-integral controller 

supported by different additional feedbacks. A method 

for a robust integral controller is presented by Hu [2], 

and problem of pulse-width pulse-frequency 

modulated input shaper for flexible spacecraft has 

been completely discussed in this work. Integral twist 

actuation of helicopter rotor blades have also been 

used for vibration control in [3]. A series of vibration 

control methods are developed based on PID control 

method. PID such as its numerous applications in 

different control design systems, they have also been 

used for vibration controller. In these systems 

however, the integrator plays a very important role. 

Some very useful examples of these techniques are 

found at [4-7].  

 

 

2.4 ACTIVE CONTROL 

 

An active control system is a system where an external 

source gives energy to one or more of the control 

system stimulant. And this stimulus forces in 

accordance with predefined states apply to structures. 

These forces may be used to add or dissipation energy 

structures [153]. 

 
In an active control system has been set up for 

electromechanical or electro-dynamics control system 

that forces applied to the structure, required a great 

source of energy. The control forces created based on 

feedback from sensors which measure the response of 

the structure or stimuli that are obtained. Since the 

active control systems need to function to an external 

energy source, at the time of occurrence of extreme 

events remains unchanged and damage and Structural 

integrity and performance is not affected. [152] 

 
Hanagan and Murray [144] and Hanagan et 

al. [152] developed an active electromagnetic actuator 

that uses a piezoelectric velocity sensor and a feedback 

loop to generate control forces, thus adding damping 

to the supporting structure. Significant results were 

obtained on the office floor of a light manufacturing 

facility and a chemistry laboratory. High initial cost, 

maintenance, reliability, and the number of actuators 

needed to effectively reduce vibration levels were 

issues that were noted with this system. 

 

2.5 SEMI-ACTIVE CONTROL 

 
Semi-active control systems, batch control 

systems are structures in which foreign energy devices 

can be used to change the mechanical properties. [153] 

Semi-active control systems are essentially passive 

control systems that are able to change and adjust the 

mechanical properties of the system, and therefore 

often this control systems, so-called passive control 

devices (passive devices controllable). This system is 

based on feedback from the measured mechanical 

properties of structural response are set. 

In a semi-active control scheme, a system controller (a 

computer) to measure feedback and based on a 

predetermined control algorithm, sends the 

appropriate signal to the semi-active devices. Control 

forces produced by using the structure itself and the 

appropriate set of structural and mechanical properties 



 Journal of Civil Engineering Researchers 5 

of semi-active control system. Moreover, given that 

most of the forces in control of semi-active control act 

in the opposite direction Structure, So the overall 

stability of the structure. [155] 

During the 1980s, the auto industry researched, 

developed and tested various types of semi-active 

shock absorbers. That research produced a new type of 

control actuator that has applications in civil, 

mechanical, and aerospace engineering. These devices 

were developed in response to a need in the auto 

industry to provide improved ride comfort in vehicles. 

There are two broad classes of SA actuators: those that 

dissipate energy via damping and those that store 

energy by varying stiffness. 

There has also been an intensive effort since the mid-

1980s to develop control systems for civil structures. 

The past effort has produced a range of designs that 

include fully active systems, entirely passive systems 

and designs that rely on a mix of those two (hybrid 

systems). Active control systems invariably require 

line power to achieve vibration mitigation. Passive 

designs require no power, 

and are usually less expensive than active designs, but 

are incapable of achieving the protection that an active 

system can provide. Spencer and Sain asserted that 

‘‘Control strategies based on semi-active devices 

appear to combine the best features of both passive and 

active control systems and to offer the greatest 

likelihood for near-term acceptance of control 

technology as a viable means of protecting civil 

engineering structural systems. . .’’ [145]. Semi-active 

control systems provide a much needed technology 

between fully active structural control systems and 

passive designs. The term semi-active describes a 

system that consists of a variable actuator that requires 

very little power to operate. Both the semi-active (SA) 

hydraulic system and fully active (FA) hydraulic 2490 

A. Ebrahimpour, R.L. Sack / Computers and 

Structures 83 (2005) 2488–2494 system designs 

include actuators, valuing, etc. But the power required 

for the SA system is that necessary to modulate the 

valve position only. That power is typically many 

orders of magnitude less than that required to achieve 

a similar FA design. The utility of a SA design is 

realized when it is used to dissipate energy. Mitigating 

the motion of a structure during an earthquake, or 

attenuating the response of a beam due to dynamic 

loading are examples of applications where the motion 

of the structure can be harnessed to make a SA design 

functional. For these applications, analysis has shown 

that, if the hydraulic pump is removed from a FA 

hydraulic design, and the plumbing is altered, then the 

(now SA) system can provide attenuation that is 

equivalent to what would have been expected had the 

FA design been implemented. SA friction dampers, 

mounted as braces on a structure are examples of a SA 

control system. Hydraulic semi-active vibration 

dampers (SAHD), provide a combination of both 

damping and stiffness. Sack and Patten [146] 

conducted tests using a single-lane bridge 12.3 m in 

length that they subjected to vehicle loadings. They 

significantly reduced peak deflection by as much as 

15% using feedback linearization to produce a 

suboptimal controller design. They also demonstrated 

the effectiveness of semi-active control on a full-scale 

experiment on an in-service bridge on interstate 

highway I-35 in Oklahoma. This application was the 

first full-scale implementation of semi-active control 

in the United States on a civil structure, and the results 

showed deflection reduction of more than 70% when 

compared to the vibration deflection of the bridge 

operated without dampers attached [147,148]. Setareh 

[149] and Koo et al. [150,151] proposed the use of a 

new class of semi-active tuned mass dampers, called 

ground-hook tuned mass dampers (GHTMD). 

Ground-hook control was initially introduced for 

vehicle application. Unlike the ‘‘skyhook’’ control 

that is designed to control the vibration of the sprung 

mass for the comfort of a rider, the ‘‘ground-hook’’ is 

intended to reduce the vibration of the unsprang mass 

(i.e., the tire and axle assembly). The ground-hook 

control 

is used for the stability of the vehicle. Because the 

structure’s mass is similar to the unsprang mass of a 

vehicle, the ground-hook control is applicable in the 

control of structures attached to a TMD. Setareh 

obtained optimum design parameters for GHTMD in a 

floor structure, based on minimization of the 

acceleration response of the floor, mass ratios (damper 

to structure), and floor damping ratios. Koo et al. [151] 

suggested four control strategies for use in GHTMDs: 

two velocity-based and two displacement-based. In 

each case, two types of semi-active damping were 

considered: continuous and on-off. The study 

concluded that the on-off displacement-based control 

performs best in minimizing the structural vibrations. 
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2.6 HYBRID CONTROL 

In a hybrid control system may be use an 

active or semi-active control system to supplement and 

improve the efficiency of the passive control system 

or, conversely use a passive control system to reduce 

energy requirements in an active or semi-active 

control system. For example, it can be noted to a 

building equipped using by distributed a series of 

viscoelastic dampers and active mass damper on the 

top floor it. It should be noted that the main difference 

between active control and hybrid in most cases, the 

amount of external energy required by the system. So 

we can say that hybrid control systems actually reduce 

some of the limitations of each of the main control 

systems and as a result, these systems have a higher 

performance level. In addition, even if the power 

supply fails, the of passive components and hybrid 

control continues to fulfill its duty to protect the 

structures. [153,155] 

3. SLIDING MODE CONTROL AND 

NONLINEAR METHODS  

the most frequently used accost for vibration 

control is Sliding Mode Control or (SMC). An 

adaptive method is proposed and experimentally used 

by Li et al [8]. Another method has been developed by 

Hu which is an observer based method [9].  

A dynasties of nonlinear vibration controller have 

been applied for nonlinear vibratory systems. The 

reference [10] is a useful source for this topic. 

Nonlinear vibration control has been used alongside 

energy harvesting in [11]. Hybrid time-domain and 

spatial filtering nonlinear damping strategy for 

efficient broadband vibration control is developed and 

discussed in [12]. For nonlinear vibrations, a series of 

works are developed and implemented [13-15].  

collections of nonlinearities are caused by the 

nonlinear geometry of the system, for those, Method 

of Multiple Scales are used [16-20]. Cantilever beams 

are typically vibrated nonlinearly when the magnitude 

are high. Some useful references of these techniques 

are found at [21-26].  

 

4. POSITIVE POSITION FEEDBACK (PPF)  

Positive situation Feedback (PPF) is 

indubitably the most famous technique for vibration 

control in resonant frequencies. PPF control has been 

extensively used in space structures vibration control. 

In fact, PPF was first introduced for this application 

and was designed to use piezoelectric 

actuators/sensors [27, 28]. Vibration control of space 

structures has been a challenging problem since the 

beginning of space travel. There are several studies on 

active vibration control of space structures where 

collocated control methods are widely used. Recently, 

PPF control has overshadowed other collocated 

methods enhanced by some other approaches such as 

adaptive control [29-33]. PPF has been modified in 

order to have a higher level of suppression [34-36]. 

Direct velocity feedback and acceleration feedback 

have also been used by several researchers for the 

vibration control of space structures [37-45]. 

Specifically, acceleration feedback control has been 

used for the control of the self-mobile space 

manipulator [46].  

as well, active noise and vibration control of pliable 

structures by means of smart materials, mainly 

piezoelectric patches, is of interest of many scholars. 

Application of piezoelectric actuators and shape 

memory alloys in vibration control is increasing in 

many research areas from micro-scale actuators in 

atomic force microscopes to active vibration control of 

aircraft bodies [47-50]. Direct Velocity Feedback 

(DVL) and PPF have been experimentally used to 

control the vibration of a micro-actuator for hard disk 

drives [51]. Vibrations in an aircraft or aerospace 

structure may appear due to various issues, and there 

are different methods to control the vibrations. Active 

vibration control also has been used for space 

structures, such as the Solar Array Flight Experiment 

(SAFE) structure during its deployment [52]. Two of 

the most recent approaches that are based on PPF are 

presented in [53, 54].  
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5. VIBRATION CONTROL IN MEMS 

SYSTEMS  

The vibration control of Micro-Electro-

Mechanical structures is an interesting and 

challenging study area that is widespread applicable in 

micro-mass measurement, micro-sensors, and micro-

mirror control. One of the important MEMS devices is 

micro-gyroscope. Micro-gyroscopes provide a low 

cost inertial measurement of rotation rate by sensing 

the Coriolis force, the study of their control is essential 

[55-57]. An integral part of most MEMS devices is a 

micro-cantilever. They are the sensing device in 

micro-biosensors, micro-mass sensors, and in the 

Atomic Force Microscope. Piezoelectric materials are 

extensively used in novel studies and industries, 

especially aerospace, and in wide and various 

applications in both macro- and micro-technologies. 

Because of their small size and light weight, they have 

been extensively used in aircraft and aerospace 

structures for active vibration control alongside 

collocated control methods. They have been used by 

research institutes such as McDonnell Douglas 

Aerospace in Huntington Beach, California [58-59]. 

Acceleration feedback control is not as popular as 

velocity or position feedback but is still used for many 

aircraft vibration control applications [60]. Scanning 

Probe Microscopes (SPM) was at first designed to 

catch three dimensional images of Nano-scale 

surfaces; however, today it has many other 

applications including bio-sensing for cell property 

measurement, Nano-manipulation, and friction 

measurement. Modeling and calculation of the forces 

between the SPM tip and the sample is one important 

part of the measurements. There are two forces that 

should be measured: The Van der Waals force and the 

contact force. Contact force identification using the 

subharmonic resonance of contact mode AFM was 

studied considering the nonlinear contact force 

between the tip and a hard sample [61]. In another 

study, the dynamics of the AFM were investigated in 

the presence of a nonlinear contact and Van der Waals 

force; however, the micro-cantilever beam was 

considered to act linearly [62]. However, most of the 

studies considered forces to act linearly [63]. 

Nonlinear behavior of non-contact tapping-mode 

AFM was studied in the presence of the Van der Waals 

force to study the stability of the system [64]. The 

dynamic-coupling effect associated with using an 

iterative control and positive velocity and position 

feedback control of piezoelectric tube scanners has 

been studied [65]. An iterative control approach has 

also been used for high-speed force-distance 

measurements using AFM [66].  

6. OTHER NOVEL CONTROL TECHNIQUES  

In the last part of this paper, some other novel methods 

for vibration control are summarize. In a chain of 

studies, vibration control using network based 

methods are applied. Two of these studies include 

PPF-based control and an integral resonant method 

[67-68]. A novel active pneumatic vibration isolator 

through floor vibration observer has been used for 

robust control in [69]. In another study in [70], a self-

sensing and actuating method is used. A two-degree-

of-freedom active vibration control of a prototyped 

smart rotor has been investigated [71]. Flatness-based 

active vibration control for piezoelectric actuators is 

studied in [72]. For more unconventional techniques 

that are designed for a variety of systems, see [73-77].  

7. CONCLUSION  

Our goal in this paper, Provide a comparison review in 

the field of vibration control procedures and 

techniques. In recent years, research has moved 

mostly from active control to semi-active and hybrid 

vibration control of structures. Semiactive and hybrid 

control systems provide more practical approaches for 

actual implementation of the smart structure 

technology. with exclusive focus on recently 

published methods of control algorithms. These 

techniques were divided into categories of integral 

based methods, nonlinear techniques, PPF-based 

methods, vibration control in MEMS systems and 

some other unconventional methods. Each of the 

mentioned techniques are specifically designed for a 

special vibration control case. The controller designed 

must first understand his problem very well, and then 

start selecting the controller from available methods. 

However, it is highly recommended that the technique 

is modified for the requirements of that specific 

vibration control problem.  
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