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Beams are always noteworthy as an engineering structure due to their wide application in 

industry such as bridges, railway tracks, floors and ceilings of buildings and many other 

cases. Therefore, considering the wide application of these materials in industry, the analysis 

of this category of structures becomes important in the overall design process of these parts 

in a structure. With the increasing use of beams in industry and the need to increase their 

efficiency and ensure their proper functioning, the use of new materials such as functionally 

graded materials has increased. The use of composite materials, shape memory alloys, 

piezoelectric materials, etc. and the expansion of the scope of use of these materials has led 

to increased efforts by researchers to achieve the construction and design of structures and 

parts with better efficiency and quality. On the other hand, conducting experimental analyses 

on these materials is associated with problems such as size, price, complexity of the 

laboratory model, etc., hence the presentation of general theoretical models. In this research, 

the vibration analysis of a nanobeam is considered. Unidirectional FGM (functional 

properties along the beam thickness) with carbon nanotubes and a layer Metal and ceramic 

supports on various types of supports Sometimes. The solutions, including simple, complex, 

etc., were discussed. The solution method in question was the mixing method, and in line 

with the thickness of the numerical method, the differential function. It has been DQ based 

on this, relationships have been extracted regarding how to increase the natural frequency 

and the lowest natural frequency, as well as the length-to-thickness ratio, natural frequency 

changes, and dimensionless natural frequency changes in the beam. 
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1. Introduction 

Currently, the use of functionally graded nanobeams, 

plates, and layered structures is expanding significantly in 

industry. In this way, the bending stiffness and strength of 

functionally graded nanobeams exceed the bending 

stiffness of each of its components alone, which is achieved 
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at the lowest possible weight of this type of structure ¬are 

usually used somewhere¬. Weight is a critical factor, 

meaning that the weight of the structure must be low. For 

example, in the aerospace, mining, and sports equipment 

industries. In recent years, much attention has been paid to 

the development of nanostructures with functionally 

graded properties and their applications. The general 
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properties of these structures are high thermal resistance, 

high strength-to-weight ratio, good sound and energy 

absorption, and often low production costs. These 

structures have a very good light-stiffness ratio. Many 

applications of nanostructures with functionally graded 

properties require the production of complex shapes, which 

has made the analysis of these materials more complex. 

Also, to make the structure lighter and structures that 

require high bending stiffness, nanomaterials with 

functionally graded properties are used in structures. A 

nanocomposite is also a composite in which one or more 

components have dimensions less than 100 nanometers. 

Nanocomposite are composed of two phases. The first 

phase is a crystalline structure, which is actually the base 

or matrix of the nanocomposite and may be made of 

polymer, metal or ceramic. The second phase is particles 

on the nanometer scale. May they be Title: Filler 

Reinforcement for specific purposes such as strength, 

resistance, electrical conductivity, magnetic properties, 

and... are distributed within the first phase (base material). 

1.1. Functionally graded materials  

Functionally graded materials are composite materials 

that are microscopically heterogeneous and in which the 

properties and characteristics of the material change 

continuously and gradually from one level to another. In 

these materials, the properties change as a function of 

position, which may occur naturally or as a result of 

manufacturing processes [1]. Materials generally exhibit 

one property, while in functionally graded materials the 

properties of one side are different from the other. For 

example, one side may have high mechanical strength and 

the other side may have high thermal resistance. Figure (1-

1) shows the material and its properties in different 

structures. 

 
Figure 1: Types of material structures and their properties [1] 

 

As can be seen in Figure 1, in the structure (a) the 

material is homogeneous and the properties are the same at 

all points of the material. In the structure (b) a new material 

is obtained by joining two materials together and the 

properties of the new material change in the form of 

bridges. Also, a boundary is created at the junction. In the 

structure (c) which is a functional graded structure, the 

properties change uniformly from one side to the other, and 

no boundaries can be determined between the constituent 

materials within the material. 

So in graded materials, there is a continuous change in 

properties. That is, this material is formed by bonding 

materials to. Individually to It is not easy to obtain both 

comes, because in this case a boundary is created in the 

material. In other words, by mixing several materials with 

different properties, continuous and gradual changes are 

created in the manufactured material without creating a 

boundary. Due to the continuous and gradual changes that 

occur in the body, this manufactured material is called a 

functional material. The gradual change in the properties 

of functionally graded materials, unlike the sudden change 

in discrete layered materials such as fiber-matrix 

composites, is used to modify the fracture performance and 

crack growth that is clearly visible in the intermediate 

surface of the composite materials. These properties and 

characteristics are designed by manufacturers according to 

the needs and uses. Examples of these characteristics 

include crystal structures, crystal orientation, grain 

diameter and boundaries, particle distribution conditions, 

hardness and ductility values, thermal resistance, etc., 

which can be in any direction (horizontal or vertical). In the 

simplest FGMs consist of two different material 

components. Continuously from one to the other, as in 

Figure.2a it is explained that the composition of the 

materials can also change. 

  

(a) (b) 
Figure 2: Different designs in functionally graded structures [1] 

Discontinuous face and step by step (Figure 2(b)). Both 

of these cases are considered structurally FGM. The basic 

idea of this structure was first presented in 1972 for 

composites and polymeric materials, and various models 

for the composite components in polymerization were 

proposed with possible applications for hierarchical 

structures. However, until 1980 there was no real 

investigation and research on how to build and evaluate 

hierarchical structures. 

Functionally graded materials are also found in nature. 

It is found in the biological tissues of plants and animals 

and even in our own bodies, such as bones and teeth. 

Bamboo, oysters, and coconuts are good examples. Both 

bamboo and oysters are very hard on the outside and soft 

and durable on the inside. On the other hand, bamboo 

plants have other good qualities. They are lightweight, 

strong, and flexible. It organisms have a very suitable 

structure for living in the environment. All living things in 
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nature are best created with structures and tissues that 

include functional materials. 

In Figure 3Cross section of a clam shell It is shown. The 

continuous change of material on the surface of this shell 

is clearly evident in its appearance. The variety of material 

and its relationship to appearance is noteworthy. Teeth, 

shells, bone Example There are studies that show how 

nature shapes the microscopic structure of materials by 

placing stronger elements where stress and strain are 

highest. It is, it gives order. 

 
Figure 3: Cross section of an oyster shell [1] 

The basic idea of hierarchical structures was first 

proposed in 1972 for composites and polymeric materials, 

and various models for the components of the composite in 

polymerization were proposed with possible applications 

for hierarchical structures. However, it was not until 1980 

that there was any real investigation and research into how 

to design, fabricate, and evaluate these structures. 

Functionally graded materials were developed around 

1984. Two researchers, one studying aeronautics and 

astronautics and the other advanced materials, worked 

together on spacecraft. The outer shell of spacecraft is 

exposed to very high temperatures (about 1700 degrees), 

so it needs to be able to withstand the harsh conditions of 

the large temperature difference between the inside and 

outside. No single material could withstand such 

conditions. The researchers came up with a concept called 

functionally graded materials. (FGM) thought of producing 

a material for spacecraft bodies by gradually changing its 

properties, which would have both enhanced thermal 

resistance and good mechanical properties. They decided 

to use ceramics for the external surface exposed to very 

high temperatures and heat-conducting materials for the 

internal surface. This was the beginning of research 

activities on functionally graded materials. In 1987, their 

research The research project on functionally graded 

materials became a major project of the Ministry of 

Science and Research. Between 1987 and 1991, the 

research project It was started when many researchers from 

universities, laboratories and companies participated in the 

work. They discussed the development methods of 

functionally graded materials and the production steps such 

as material design, production and evaluation. Finally, the 

thermal stress-releasing material (FGM) was developed. In 

1990, the first international conference on functionally 

graded materials was held in Sendai, Japan, and in 1992, 

functionally graded materials (FGM) were announced as 

one of the top ten technologies and attracted much attention 

worldwide. 

1.2. Relationships governing functionally graded 

materials 

Consider a case where the sheet is made of a material 

with a functional property of ceramic and metal. The 

material properties vary continuously along the thickness 

according to the following relationships: 

𝐸(𝑧) = 𝐸𝑚 + 𝐸𝑐𝑚𝑉𝑓(𝑧) (1) 

𝜈(𝑧) = 𝜈𝑚 + 𝜈𝑐𝑚𝑉𝑓(𝑧) 

𝜌(𝑧) = 𝜌𝑚 + 𝜌𝑐𝑚𝑉𝑓(𝑧) 

Ecm = Ec − Em 

νcm = νc − νm (2) 

ρcm = ρc − ρm 

Which refers to materials with the properties of metals 

and ceramics and 𝑉𝑓(𝑧)is the volume fraction of structural 

materials is most often expressed by power law or sigmoid 

functions. For power-functionally graded materials, the 

volume fraction is expressed as: 

Vf(𝑧) = (
𝑧

ℎ
+
1

2
)
𝑁

 
(3) 

Where N represents the power law, the material index, 

which shows the index of change of the material in its 

thickness. 

For sigmoid functionally graded materials, the volume 

fraction function is expressed as follows: 
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(4) 

Similarly, N represents the thickness change profile of 

the material, which controls the change in Young's 

modulus. 

For two-layer functionally graded materials: 

Vf(𝑧) =

{
 
 

 
 
(1 −

2𝑧

ℎ
)
𝑁

               0 ≤ 𝑧 ≤
ℎ

2

(1 +
2𝑧

ℎ
)
𝑁

             −
ℎ

2
≤ 𝑧 ≤ 0

 

(5) 

There is another type of functionally graded material in 

which the material properties follow an exponential 

distribution and are expressed as follows: 

𝐸(𝑧) = 𝐸𝑚𝑒
1
ℎ
ln
𝐸𝑐
𝐸𝑚

(𝑧+
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2
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The exponential change model of properties in 

functionally graded materials is a suitable model for 

obtaining an accurate solution of elasticity. 

1.3. History of studies  

In 2001, Sankar, a bullet from the barrel–Bernoulli 

made of materials FGM with simple supports has been 

statically investigated. An orthotropic beam is under 

normal stress only and all desired elastic parameters are 

proportional to which is constant and z is the coordinate 

component in the thickness direction which has obtained 

the exact solution. (The beam is only mechanically loaded 

in a sinusoidal form and Poisson's ratio is assumed to be 

constant). [3] 

In 2002, Chakraborty and his colleagues used the finite 

element method based on the first-order shear deformation 

theory to calculate the change in elastic and thermal 

properties through the thickness. Both exponential and 

power-law deformations of the material properties were 

used to represent the changes in different stresses. (The 

beam was considered under both thermal and mechanical 

forces.)). [4] 

In 2003, Chakraborty and his colleagues used a finite 

element method based on the first-order shear deformation 

theory to study the effects of geometric nonlinearity on the 

dynamic and static response of isotropic, composite, and 

material beams. FGM has been used. The general Lagrange 

equation of the linear beam element for the displacement 

analysis and rotation Big ones to the work has been done. 

Both frequencies High and low pulse Loading curves are 

used to show the nonlinear effect on the transient response. 

(Power distribution is considered for material properties.) 

[5] 

In 2004, Shi and colleagues, Analytical solution of a 

single-ended piezoelectric beam made of materials FGM 

has been studied under different loads. A piezoelectric 

beam with a continuously varying elastic parameter and 

material density is considered. A pair of stress and 

induction functions are assumed and determined as 

polynomials. Based on these functions, a set of solutions of 

this paper is obtained. Such as problems such as a 

piezoelectrically engaged one-ended beam with a constant 

body force or without body force, etc. In this research, the 

direct and inverse behavior of a piezoelectrically restrained 

one-ended beam is investigated. The Airy stress function 

method is used to find the solution. The result is that the 

stress function used to analyze a one-ended beam made of 

FGM materials and piezoelectric layers is similar to the 

function used for a similar beam made of homogeneous 

elastic materials. Also, if the body forces are ignored, some 

effects such as the effect of the FGM material parameter 

and layers are eliminated in the analytical solution. [6] 

In 2006, Ding and his colleagues have investigated the 

plane stress problem of non-isotropic beams, assuming that 

the desired elastic parameters are arbitrary functions of the 

thickness coordinate direction. Partial differential 

equations, which are expressed by the Airy stress function 

for the plane problem of materials the non-isotropic FGM 

is satisfied and includes body forces. The solutions 

performed are: solution for beam under pure tension and 

bending, solution for single-ended fixed beams with free 

ends under shear force, solution for single-ended fixed 

beams or beams with simple supports under uniform force, 

solution for double-ended fixed beams under uniform force 

and solution for beam under body force and can be easily 

solved. The elasticity values for homogeneous beams 

decrease. In this case Research the Silverman 1964 method 

has been generalized to provide a general way of obtaining 

the stress function for beams made of materials with non-

isotropic functional properties. No assumptions are made 

for the variation of the desired elastic quantities through the 

thickness. In addition, the change in physical force with 

coordinates has been taken into account.[7] 

In 2007, Kapoor and his colleagues third-order zigzag 

theory based on a model for beams made of materials 

layered FGM in combination with the modified law of 

mixtures for effective elastic modulus have been validated 

with tests for free and static vibration response. 

Two sets, using powder metallurgy and technique 

respectivelyAl/sicNi/〖AL〗_2 O_3Heat dissipation 

generated are being considered for validation effect of 

number of layers the accuracy of the theoretical model is 

discussed. A finite element model for dynamic analysis of 

material beams with layered functional properties, efficient 

zigzag theory for layer mechanics, modified mixed method 

the elastic modulus effect has been estimated and validated 

in laboratory experiments. Two models of three-layer and 

five-layer materials have been used FGM has been used for 

calculations. The volume fraction of the material is 

assumed to be it varies exponentially along the thickness 

slow.[8] 

In 2007, Kaduli and his colleagues developed a 

displacement field based on higher-order shear 

deformation theory to study the static behavior of beams 

made of materials. Metal-ceramic FGMs are used under 

ambient temperature. Beams made of materials FGM with 

varying metal and ceramic volume fractions are considered 

based on the power law. Using the static potential energy 

law, the finite element form of the static equilibrium 

equation for a beam made of FGM materials is shown. 

Numerical results of vertical deflection and axial and shear 

stresses in a thick FGM beam in equilibrium under uniform 

load distribution for clamped boundary conditions–The 

effect of power distribution for different metal 

compositions is discussed. – Ceramic beam made of 

materials with FGM on deflection and stresses has been 
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explained. The study reveals that the static deflection and 

static stresses will not be the same depending on whether 

the load is applied to a pure metal or pure ceramic surface. 

[9] 

In 2007, Lee, an integrated method (analytical solution) 

for static and dynamic analysis of beams made of materials 

FGM, considering rotational inertia and shear deformation. 

All material properties are optionally considered as a 

function of the beam thickness. The results obtained cover 

the homogeneous Timoshenko beam with fixed elements 

without material properties. The proposed method for 

laminated Timoshenko beams is applicable to they are used 

the equations are obtained assuming the Timoshenko 

theory. It is assumed that the shear deformation and 

deflection in the direction Z depend only on X and 

temperature and are constant at any cross section. 

Numerical results for a beam that obeys a power law 

Multilayer Euler-Bernoulli and Timoshenko beams and 

beams obtained w When shear deformation and rotational 

inertia are Simultaneously disregarded, Euler's results–

Bernoulli gets Come.[10] 

In 2007, Tao and his colleagues used the Airy stress 

function method for a piezoelectric single-ended beam 

made of materials with functional properties. It is assumed 

that the feature t the mechanical and electrical properties of 

the material have similar variations along the thickness. 

and, a two-dimensional plane elasticity solution for 

coupling of electric fields–The elasticity of the beam under 

different loads has been obtained. This solution is for 

analyzing a beam made of functional materials with a layer 

Piezoelectric material with optional changes in properties. 

The properties of the materials will also be affected. 

Material properties with functional properties on the 

structural response of the beam under various loads have 

been studied in numerical examples. (A single-ended beam 

with a free end under a uniform load on the upper edge is 

assumed).[11] 

In 2007, Chen His colleagues have investigated the 

bending problem of a non-isotropic single-ended beam 

made of a material with linearly distributed functional 

properties under load. Analysis based on exact elasticity 

equations for plane stress problems. The stress function is 

given by the form of a polynomial function of the 

longitudinal component is introduced.[12] 

The analytical solution shows a good agreement 

compared to the finite element calculations. The desired 

elastic parameters are functions of the beam thickness only. 

The analytical solution can be easily reduced to the 

solution for a homogeneous beam. 

In 2007, Chen and colleagues investigated the bending 

problem of a non-isotropic single-ended beam made of 

functionally-proper materials under thermal and uniform 

spread loads. are, where the material parameters are 

functions of the thickness coordinates. The thermal 

conductivity problem behaves like a one-dimensional 

problem along the thickness. Based on the initial equations 

for the plane stress problem, The stress function is the form 

of a polynomial function of the longitudinal coordinates in 

such a way that the stress it is assumed that they are 

obtainable.[13] 

In 2007, Chen and his colleagues presented an exact 

solution for the bending and free vibration of a beam made 

of functional material on an elastic base based on the two-

dimensional elasticity theory. The beam is assumed to be 

orthotropic at all points, while the material properties vary 

exponentially throughout the thickness. The system of 

governing partial differential equations is reduced to a 

normal state in the thickness limit by expanding the state 

variables into a series. Infinite sinusoidal waves decrease. 

The problem is finally solved using the state space 

method.[14] 

In 2007, Zhong His colleagues, an elasticity solution for 

beam bending FGM using inverse methods in Airy stress 

function sentences was reported. [15] 

In 2007, Ding and his colleagues, a series of analytical 

solutions for beams anisotropic FGM with various support 

conditions were extracted using an Airy stress function in 

general polynomial form. [16] 

In 2009, Farhatnia and his colleagues developed 

analytical and numerical solutions for beams FGM under 

stress. They presented thermomechanical equations; they 

used the Euler-Bernoulli beam theory for analytical 

solution and the finite element method for numerical 

solution.[17] 

In 2010, Ali Bigelow Thermoelasticity analysis for the 

beam FGM with integrated piezoelectric surfaces is 

presented, the properties in the thickness direction are 

assumed to be exponential and the Poisson's ratio is 

assumed to be constant. Beam in the support condition. 

Sometimes simple, with a limited length, and subjected to 

uniform pressure and thermal force, and in a state of plate 

tension. It is and at its lower level the temperature is 

considered to be zero.[18] 

In 2010, Shimshak Beam base frequency analysis FGM 

with theory examined various higher-order [19] 

In 2012, Tai and colleagues, beam bending and 

vibration FGM with theory various higher-order shear 

deformation models were investigated.[20] 

In 2013, the Pardahan and his colleagues, free vibration 

of the beam Eulerian and Timoshenko investigated the 

FGM using the Rayleigh-Ritz method. [21] 

In 2013, Thomas and his colleagues, a nanocomposite 

beam FGM with nanotubes. They modeled randomly 

placed beams using finite elements and investigated their 

free vibrations. For this analysis, Timoshenko beam theory 

was used. Also, Mori Tanaka approach was used to analyze 

the beam properties and the equations of motion were 

extracted using Hamilton's laws. The obtained results 



 Journal of Civil Engineering Researchers 

2025-vol7(2)-p 21-37 

 

26 

provide the most accurate representation of the nanotube 

placement. [22] 

In 2013, Mohammadi Mehr and his colleagues analyzed 

the bending and vibration of a nanocomposite beam with 

functional properties based on the Timoshenko beam 

model based on coupled stress theory. The equations of 

motion were obtained using Hamilton's theory and Navier 

equations, and the functional properties FGM is considered 

as exponential functions.[23] 

In 2013, Heshmati and his colleagues performed the free 

vibration analysis of a nanocomposite beam with carbon 

nanotube fibers with functionally graded properties using 

the Ashleby, Mori, Tanaka approach. In this project, the 

governing equations were derived based on the virtual 

work rules and assuming the Euler-Bernoulli beam theory. 

The finite element method was also used for better 

approximation. [24] 

In 2015, Moradi Dastjerdi and colleagues performed 

vibration analysis for a composite beam. FGM reinforced 

with carbon nanotube fibers and placed on an elastic 

substrate. For the analysis of free vibrations, shear 

deformation theory was used and the equations of motion 

were obtained using Hamilton's energy laws and Navier's 

method. The substrate considered in this project is the 

classical Winkler-Pasternak substrate and the functional 

properties of the materials are in the thickness direction and 

the placement of the nanotubes carbon nanotubes were 

prepared according to Mori Tanaka principles. [25] 

Zarehparvar-Shoja et al. [26], utilizes carbon nanotubes, 

to improve the mechanical characteristics of concrete as a 

building material. 

2. Method of square differences  

Numerical method of square differences It is a 

numerical method for solving differential equations. It was 

first introduced by Bellman and his colleagues before 

1970. It approximates the derivatives of a function at each 

location by a linear series of all the values of the function 

at the sample points. The key to the method is the use of 

the method of square differences in determining the 

weighting coefficients. Bellman initially proposed two 

methods for calculating the weighting coefficients for first-

order weighted derivatives. The first method is based on a 

system of algebraic equations of anomalous conditions. 

and the second method uses a simple algebraic 

formulation, but the coordinates of the points are 

determined by the roots of the Legendre polynomial. The 

method of square differences has been used as a powerful 

numerical discretization tool. Compared to the finite 

difference method Low order and finite element methods 

The square difference method produces much more 

accurate results with fewer node points, resulting in fewer 

calculations. 

2.1. Introduction to the method of square differences and 

its governing equations  

Many engineering problems or sets of partial 

differential equations It is accompanied by appropriate 

boundary conditions. For example, Newton's laws in fluids 

are modeled by the Navier-Stokes equations, the vibration 

of thin shells is modeled by fourth-order differential 

equations, and also waves acoustics and micro can be 

solved by the Helmholtz equation Model. In the usual case, 

solving such differential equations directly is a very 

difficult task. The method of square differences for similar 

the modeling of incompressible viscous flow, free 

vibration of beams, plates, and shells, and wave analysis in 

one and multidimensional domains, in Cartesian and 

curved coordinates, have been applied by Xu Cheng and 

his colleagues. 

In most cases, approximate solutions are computed 

using function values at a series of sample points. At this 

point, the question may arise as to what is the relationship 

between partial differential equations and function values 

at sample points. In fact, it seems that there should be a 

bridge between them. The numerical gridding technique is 

in fact the bridge between the two. 

Currently, there are many numerical techniques 

available. Among them, we can mention methods such as 

finite difference, finite element, and finite volume. The 

finite difference method is based on the use of Taylor 

expansion or polynomial approximation, while the finite 

element method uses the calculus of variations. and 

weighted residuals are used. In the finite volume method, 

the direct application of the stability principle to the cells 

is used. To achieve an acceptable accurate answer, in many 

of the numerical solutions mentioned, the number of 

sample points can be increased. Vibration analysis can be 

used as an example for this. Of course, it should be noted 

that in many problems, applying a larger number of sample 

points is necessary to achieve an accurate answer with high 

accuracy, which is one of the disadvantages of these 

methods. To solve many problems, a series of differential 

equations must be solved, the analytical solution of which 

is difficult and complex. Therefore, approximate methods 

must be used. In most cases, the approximate solution is 

expressed by a series of function values at certain points 

(node points or grid points). 

The method of square differences is a numerical method 

with high accuracy while the number of nodes points it 

considers is less than other numerical methods. In this 

method, the partial derivative of a function with respect to 

a coordinate direction is expressed as an algebraic sum of 

all the values of the function at all grid points along the 
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desired direction. Instead of the methods proposed by 

Bellman, other researchers have used Lagrange's 

interpolated polynomials. 

2.2. Approximating derivatives by the method of square 

differences  

The method of square differences is a numerical method 

that approximates the derivatives of a function by a linear 

series. This numerical method is based on the idea of 

squaring the integral. It is derived from. In this section, a 

brief explanation of the integral squaring method is first 

given, and then the method of square differences is 

examined. One of the problems that usually arises in 

engineering problems is the measurement and calculation 

of ∫ 𝑓(𝑥)𝑑𝑥
b

a
 In the distance[a,b]. If there is a function F 

such that it is, then the value of this integral will be equal 

to F(b)-F(a). Unfortunately, in many engineering problems 

it is very difficult or impossible to find the function F. 

Instead, in many problems only the values of f are known 

in the interval, in which case a numerical method is 

necessary 𝑑𝑓/dx = 𝐹. 

 
Figure 4: Calculating the integral of a function f(x)In the 

interval[a,b] 

On the other hand, the integral of the function f(x)In the 

interval [a,b] represents the area under the curve of the 

function f(x). Therefore, calculating this integral is 

equivalent to approximating the area under the curve. 

Using this simple principle, various numerical methods 

have been introduced. In general, the approximation of this 

integral is represented in the following form: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑔1𝑓1 + 𝑔2𝑓2 +⋯+ 𝑔𝑁𝑓𝑁

= ∑𝑔𝑘𝑓𝑘

𝑁

𝑘=1

 

(7) 

in which gk the weighting coefficient functions and the 

fk are the values of the function f at the points Xk. The 

equation mentioned is called the integral square, which is 

used to calculate the integral of the function. Now we will 

examine the differential squaring method. 

Consider a one-dimensional problem, as shown in 

Figure (4). It is assumed that the function f(x)It has good 

uniformity at all points of the range. 

 
Figure 5: A one-dimensional problem 

Using the idea of integral squaring, Bellman proposed 

in 1972 that the first-order derivatives of the function 

f(x)At the nodes Xi, can be approximated by a sum of 

function values over the entire domain as follows. 

fx(xi) = (
df

dx
)
x=xi

=∑gij

N

j=1

. f(xi)    ,   for  i = 1,2,… , N 
(8) 

in which gij weighting coefficients and Nis the number 

of sample points in the entire domain. The above equation 

is a differential quadrature equation or it is called DQ. It 

should be noted that the weight coefficients are different at 

different positions of Xi. Therefore, the key to solving the 

differential quadrature approximation is to determine the 

weight coefficients. So, in the method of square 

differences, to find the unknown of the differential 

equation, the derivatives of the function are considered to 

be equivalent to the sum of a series of products of the 

weight coefficients at certain points of the function and 

then the unknown is obtained from solving the system. 

The main relationship of the method of square 

differences is generally defined as follows: 

(
∂nf(x)

∂xn
)
x=xi

=∑gir
(n)

N

r=1

. f(xr) 
(9) 

𝑛 = 1,2, … , 𝑁   ,   𝑖 = 1,2, … , 𝑁 

in which f is the desired function, N is the number of 

sample points, Xi is the i-th sample point of the function 

interval, and gij is the weighting coefficients for the 

derivative. Therefore, it can be seen that two very 

important and determining factors in the accuracy of the 

square difference method are the weighting coefficients 

and the selection of sample points, which will be 

mentioned below. 

2.2.1. Selecting sample points 

The method of selecting sample points is one of the 

most important parameters affecting the accuracy of the 

answers. There are several methods for selecting sample 

points, three of which will be mentioned here. 

a) Sample points with equal distances 

The first and simplest method for selecting sample 

points is to define the scope of the problem as N the 

point should be divided by equal distances. That is: 
∆𝑥 = 𝑥2 − 𝑥1 = 𝑥𝑖 − 𝑥𝑖−1 = 𝑥𝑁 − 𝑥𝑁−1 (10) 

 The division is done using the following 

relationship: 

xi = a + [
i − 1

N − 1
] (b − a) 

𝑖 = 1,2,… , 𝑁   ,   𝑎 ≤ 𝑥𝑖 ≤ 𝑏 

(11) 



 Journal of Civil Engineering Researchers 

2025-vol7(2)-p 21-37 

 

28 

 

3. Roots of Chebyshev polynomials  

Usually, choosing points with equal distances does not 

yield accurate results. Experience has shown that choosing 

sample points with unequal distances gives accurate 

answers. The use of orthogonal polynomial roots is one of 

the common methods for selecting sample points with 

unequal distances. For example, Chebyshev polynomial 

roots are widely used in solving lubrication problems and 

orthotropic plates. In the field of using orthogonal 

polynomial roots, extensive studies were conducted by 

Kwan and Chang in 1989, during which it was shown that 

in the field of solving chemical engineering problems and 

applying the method of square differences, using 

Chebyshev polynomial roots as sample points leads to 

better results. On the other hand, Malik, in 1993, showed 

that using Legendre orthogonal polynomial roots is more 

useful than Chebyshev polynomials in solving elasticity 

and plate problems. In any case, depending on the type of 

problem, one of the mentioned methods can be used to 

select sample points. 

The division using Chebyshev polynomials is as 

follows: 

𝑥i = [a, a +
1

2
(1 − cos [

2i − 1

2N
])(b − a), b] 

𝑖 = 2,3,… , 𝑁 − 1   ,   𝑎 ≤ 𝑥𝑖 ≤ 𝑏   ,   𝑥𝑙 = 𝑎&𝑥𝑁 = 𝑏 

(12) 

Roots of Legendre polynomials: 

In order to divide the interval using the roots of the 

Legendre polynomial, first the polynomial of degree. We 

define n of the Legendre function: 

pn(x) =
1

2n n!
[
dn

dxn
(x2 − 1)n] 

(13) 

And the division of points with this method will be 

using the following relations: 

𝑥i = [a, a +
1

2
(1 − cos [

(2i − 1)π

2N − 4
])(b − a), b] 

𝑖 = 2,3,… , 𝑁 − 1   ,   𝑎 ≤ 𝑥𝑖 ≤ 𝑏   ,   𝑥𝑙 = 𝑎&𝑥𝑁 = 𝑏 

(14) 

What is observed in these relations is that the density of 

the number of nodes at the two ends of the interval is more 

than in the middle, which leads to better results. Of course, 

one of the shortcomings of the mentioned polynomials is 

that they do not include the beginning and end points of the 

interval, while in many engineering problems there is a 

need to apply boundary conditions at the beginning or end 

points of the interval. 

In 1992, in two papers examining fluid mechanics 

problems and solving Navier-Stokes equations, Shaw and 

Richards proposed a formula that, in addition to selecting 

sample points with unequal distances, also includes the 

beginning and end points of the interval: 

𝑥𝑖 = [
1

2
(1 − 𝑐𝑜𝑠 [

(𝑖 − 1)𝜋

𝑁 − 1
])] 

𝑖 = 1,2,… , 𝑁   ,   𝑎 ≤ 𝑥𝑖 ≤ 𝑏   ,   𝑥𝑖 = 𝑎 , 𝑥𝑁 = 𝑏 

(15) 

Of course, it should be noted that in problems whose 

derivatives the higher the order, the more sample points are 

needed. 

4. Selecting the weighting coefficient function  

When the weight coefficients were first determined, a 

bridge was established to connect the derivatives in the 

governing differential equations and the function values at 

the sample points. In other words, with the weight 

coefficients, the function values can easily be used to 

calculate its derivatives. To apply the differential squaring 

method to solve a differential equation, we must write the 

derivatives as the matrix product of the weight coefficients 

in the vector of unknowns, as mentioned above. Therefore, 

we must look for a solution to obtain the matrix of weight 

coefficients. Various methods have been proposed to 

calculate the matrix of weight coefficients. In these 

methods, first the function fA known function is assumed. 

By taking the derivative of this function and satisfying the 

equality of the right and left sides of the above equation, 

the weight coefficients are obtained. This function, which 

is used to obtain the weight coefficient function, is called 

the test function or experimental function. After inventing 

the method in 1971, Bellman introduced two ways to 

obtain the weight coefficient matrix. The first method was 

the Gauss method, which obtains the weight coefficients 

by solving the Vandermonde apparatus. Unfortunately, in 

this method, when the number of the number of sample 

points increases, the Vandermonde matrix conditions will 

become abnormal and the solution of the device will be 

difficult. Bellman presented his second method to solve 

this problem. In this method, Legendre's transferred 

polynomials are used. In this method, the sample points are 

the roots of Legendre's polynomials, which is of course a 

big problem in using this method because in many 

engineering problems, it is necessary to choose the sample 

points arbitrarily and freely. Considering the many 

problems that existed in both methods presented by 

Bellman, many scholars tried to solve this problem with 

various test functions. In the following, we will examine 

and define several different methods. 

4.1. Bellman's first method  

In the first Bellman method, the function introduced as 

the test function is of the following form: 

ℎ(𝑥) = 𝑥𝑘       𝑎𝑛𝑑      𝑘 = 1,2,… , (𝑁 − 1) (16) 

It is clear that the above relationship N test functions are 

given. To find these weighting coefficients, N test 
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functions must be obtained at N sample points, namely 

X1,...,XN. 

By substituting this function into the original relation of 

square differences, we will have: 

∑gijxj
k = kxi

(k−1)

N

j=1

 

𝑘 = 0,1, … , (𝑁 − 1)   ,   𝑖 = 1,2,… , 𝑁 

(17) 

So the number of weight coefficients per i,j=1,...,N is 

equal to N×N So we have a matrix N×N We have (i.e. N 

Equation and N unknown) which is calculated by solving a 

system, the vector of the weight coefficient matrix. The 

system of equations above has a unique solution, because 

its matrix is in the form of the Vandermonde matrix. 

Unfortunately, when N increases, the matrix is placed in an 

abnormal condition and it becomes difficult to find its 

inverse. To obtain results using this method, it is usually N 

it must be less than 13. 

4.1.1. Bellman's second method  

This method is similar to Bellman's first method, but it 

uses other test functions. Bellman defined another test 

function using Legendre's transformed orthogonal 

polynomials according to the following relation: 

ℎ𝑗(𝑥) =
𝐿𝑁(𝑥)

(𝑥 − 𝑥𝑗)𝐿𝑁
(1)
(𝑥𝑗)

   ,   𝑗 = 1,2,… , 𝑁 
(18) 

So that in it N Number of sample points, LN(x) Legendre 

polynomial of order N and L(1)
N(x) is the first derivative of 

LN(x). By choosing the roots of the Legendre polynomial 

and using the above relation for N points, Bellman and his 

colleagues obtained a simple relation for calculating the 

weighting coefficients, which is as follows: 

𝑔𝑖𝑗 =
𝐿𝑁
(1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝐿𝑁
(1)
(𝑥𝑗)

   ,   j ≠ i 
(19) 

𝑔𝑖𝑗 =
1 − 2𝑥𝑖

2𝑥𝑖(𝑥𝑖 − 1)
 

(20) 

Therefore, with the help of the above relations, 

calculating weight coefficients is an easy task. 

As you can see in this method, unlike the first Bellman 

method, the selection of sample points is not free. This 

means that in this method, the selection of sample points is 

exactly based on the roots of the Legendre polynomials and 

is not free, whereas in many engineering problems, the 

selection of sample points should be completely arbitrary. 

4.2. The Kwan Chang Method  

To improve Bellman's methods in finding weight 

coefficients, many efforts have been made by researchers. 

One of the most important methods was introduced by 

Kwan and Chang. Kwan and Chang from the Lagrange 

median polynomial Below to they used it as a test function. 

hj(x) =
M(x)

(x − xj).M
(1)(xj)

   ,   j = 1,2,… , N 

𝑀(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥 − 𝑥𝑁) 

𝑀(1)(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1,𝑟≠𝑖

 

(21) 

Therefore, the weighting factor in the N sample points 

are obtained as follows: 

gij =
1

𝑥𝑗 − 𝑥𝑖
∏

𝑥𝑖 − 𝑥𝑟
𝑥𝑗 − 𝑥𝑟

𝑁

𝑗=1,𝑟≠𝑖

   ,   𝑗 ≠ 𝑖 

gij = ∑
1

𝑥𝑖 − 𝑥𝑟

𝑁

𝑟=1,𝑟≠𝑖

 

(22) 

The advantage of this method over Bellman's second 

method was that there was no longer any restriction on the 

selection of sample points. 

4.3.  Method GDQ or Generalized Show Method  

The general method of Shaw is inspired by Bellman 

methods. This method includes all other methods. 

Choosing a suitable test function that does not have two 

defects of Bellman functions is a very important task. One 

of the important parameters involved in this choice is a 

correct understanding of the logic governing the method of 

square differences and the role of the test function on these 

equations, because Shaw and Richards were able to 

achieve better results by choosing different test functions. 

The reason for this is that the test function is a function with 

the help of which we obtain the weight coefficients. By 

placing this function in the main formula of the method of 

square differences, the weight coefficients are obtained. 

After obtaining the weight coefficients, we use them in 

solving various differential equations, while the weight 

coefficients are extracted only for the derivative of the test 

function and only calculate the derivatives of the test 

function accurately. In fact, by using the weight 

coefficients obtained from the test function, we 

approximate the function governing the differential 

equation with the test function. Therefore, any test function 

that can better approximate other functions will result in 

more accurate answers. Four examples of basic 

polynomials are given below: 

ℎ𝑗(𝑥) = 𝑥
𝑗−1   ,   𝑗 = 1,2,… , 𝑁 

ℎ𝑗(𝑥) =
𝐿𝑁(𝑥)

(𝑥 − 𝑥𝑗)𝐿𝑁
(1)
(𝑥𝑗)

   ,   𝑗 = 1,2,… , 𝑁 

ℎ𝑗(𝑥) =
M(x)

(x − xj).M
(1)(xj)

   ,   j = 1,2,… , N 

ℎ1(𝑥) = 1  , ℎ𝑗(𝑥) = (𝑥 − 𝑥𝑗−1). ℎ𝑗−1(𝑥)    ,    𝑗

= 2,3,… , 𝑁 

(23) 

in which LN(x) is a Legendre polynomial of degree N. It 

is also assumed that the degree of the approximation 
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polynomial in relation (a) is N-1. Among these four 

original polynomials, equations (b) and (c) are Newton's 

median polynomials. The difference between equations (b) 

and (c) is in the distribution of sample points. If equation 

(c) is defined at the sample points of the Legendre 

polynomial. Equation (c) becomes (b). So, in fact, equation 

(b) is a special case of equation (c). As a result, the 

weighting coefficients for the first-order derivative are 

obtained from the following relationship: 

𝑔𝑖𝑟
(1)
=

∏ (𝑥𝑖 − 𝑥𝑗)
𝑁
𝑗=1,𝑗≠𝑖

(𝑥𝑖 − 𝑥𝑟)∏ (𝑥𝑟 − 𝑥𝑗)
𝑁
𝑗=1,𝑗≠𝑟

 

𝑖, 𝑗, 𝑟 = 1,2,… , 𝑁 

(24) 

Using the existing relationships, the weight coefficients 

for the remaining derivative orders can be obtained, which 

are: 

gir
(n)

= 𝑛 [g𝑖𝑖
(𝑛−1)

g𝑖𝑟
(1)
−
g𝑖𝑟
(𝑛−1)

𝑥𝑖 − 𝑥𝑟
] 

𝑖, 𝑟 = 1,2,… , 𝑁   𝑎𝑛𝑑 𝑛 = 2,3,… , 𝑁 − 1 

(25) 

g𝑖𝑖
(𝑛)

= − ∑ g𝑖𝑟
(𝑛)
   ,   𝑖 = 1,2,… , 𝑁

𝑁

𝑟=1,𝑟≠𝑖

 

𝑖 = 1,2,… , 𝑁 and   𝑛 = 1,2,… , 𝑁 − 1 

(26) 

To calculate higher-order derivatives, we will have: 

[𝑔(𝑛)] = [𝑔(1)][𝑔(𝑛−1)] (27) 

The above relations are independent of the number and 

location of the sample points and on the other hand led to 

more accurate solutions due to the smaller error caused by 

rounding. In addition, the number of mathematical 

operations is also less and saves on calculation time. It is 

necessary to mention again that in this numerical method, 

unlike conventional numerical methods, adding the 

number of sample points does not necessarily lead to a 

better solution. This can be mentioned as one of the 

disadvantages of this method, but of course, considering 

the speed of convergence to the solution, this disadvantage 

can be ignored with a smaller number of sample points. 

5. Calculation of mechanical properties of beam 

CNTRC 

As you saw in Chapter 3, there are various methods for 

finding the mechanical properties of beams. There are 

CNTRC, among which we can mention the mixing law and 

the Eshelby-Mori-Tanaka method. It is worth noting that a 

number of articles have calculated mechanical properties 

using both methods, and in this Paper, the mixing law was 

used. 

5.1. Method Eshel by-Mori-Tanaka 

In this method, the stiffness matrix is calculated from 

the following equation: 

𝐶 = 𝐶𝑚 + 𝑉𝐶𝑁𝑇((𝐶𝐶𝑁𝑇 − 𝐶𝑚). 𝐴). [𝑉𝑚𝐼 + 𝑉𝐶𝑁𝑇𝐴]
−1 (28) 

𝐴 = [𝐼 + 𝑆. 𝐶𝑚
−1. ( 𝐶𝐶𝑁𝑇 − 𝐶𝑚)]

−1 (29) 

Which we have: 

 Stiffness matrix matrix 𝐶𝑚: 

𝐶𝐶𝑁𝑇: Hardness matrix of carbon nanotubes 

𝐼: Fourth-order unit tensor   

𝑆: Fourth-order Ashlabian tensor. 

5.2. Mixing law 

 One of the most general and basic relationships used to 

determine the elastic modulus of composites is the mixing 

law. In this model, the filler is considered as long fibers and 

the Young's and shear moduli of the composite are 

obtained. In this model, the complete transfer of any stress 

applied to the system from the matrix material to the filler 

is assumed. For nanotube reinforced composites, the 

mixing law relationships are used with the difference that 

the efficiency parameters CNT, have been added to the 

equations. In Fig.6 the distribution of carbon nanotubes in 

the composite beam is shown. As is clearly seen, the first 

case is a uniform distribution and the other case is a non-

uniform and functionally graded distribution. 

 

  

(a) (b) 
Figure 6: Problem geometry and nanotube distribution in the beam 

CNTRC. (a) Uniform distribution. (b) Non-uniform and graded 

functional distribution 

The relationships governing the shear and tensile 

moduli of a beam based on the mixing law are as follows: 

𝐸11 = 𝜂1𝑉𝐶𝑁𝑇𝐸11
𝐶𝑁𝑇 + 𝑉𝑚𝐸

𝑚 

𝜂2
𝐸22

=
𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚
𝐸𝑚

 

𝜂3
𝐺12

=
𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚
𝐺𝑚

 

(30) 

Which: 

 𝐸11
𝐶𝑁𝑇  , 𝐸22

𝐶𝑁𝑇  , 𝐺12
𝐶𝑁𝑇: Shear and tensile moduli of 

nanotubes 

 𝐸𝑚, 𝐺𝑚: ModuleShear and tensile modulus of the matrix 

material 
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𝜂𝑗  (𝑗 =  1, 2, 3): Nanotube efficiency coefficients 

𝑉𝐶𝑁𝑇 , 𝑉𝑚: Volume fraction of matrix and nanotubes 

It is worth noting that the effect of carbon nanotube size 

on the efficiency parameter definition CNT is considered, 

and this parameter is calculated by matching the results 

from molecular dynamics simulations and the mixing rule 

for the elastic modulus of CNTRCs. 

As shown in Figure (1), each of the nanotube 

distribution states has its own volume fraction, which is 

obtained from the following relations: 
𝑉𝐶𝑁𝑇 = 𝑉𝐶𝑁𝑇

∗                                       (𝑈𝐷 𝐶𝑁𝑇𝑅𝐶) 

𝑉𝐶𝑁𝑇(𝑧) = (
4|𝑧|

ℎ
)𝑉𝐶𝑁𝑇

∗                   (𝐹𝐺 − 𝑋  𝐶𝑁𝑇𝑅𝐶) 

(31) 

Which: 
𝑉𝐶𝑁𝑇
∗

=
𝑤𝐶𝑁𝑇

𝑤𝐶𝑁𝑇 + (𝜌
𝐶𝑁𝑇/𝜌𝑚) − (𝜌𝐶𝑁𝑇/𝜌𝑚)𝑤𝐶𝑁𝑇

               

(32) 

Also, other properties of the beam CNTRC, including 

Poisson's ratio, density, coefficient of thermal expansion in 

the longitudinal direction, and coefficient of thermal 

expansion in the transverse direction, can be obtained 

similarly to other properties of the sheet as follows: 
𝜈12𝜌𝛼11𝛼22 

𝜈12 = 𝑉𝐶𝑁𝑇
∗  𝜈12

𝐶𝑁𝑇 + 𝑉𝑚𝜈
𝑚                 

𝜌 = 𝑉𝐶𝑁𝑇𝜌
𝐶𝑁𝑇 + 𝑉𝑚𝜌

𝑚                

𝛼11 = 𝑉𝐶𝑁𝑇𝛼11
𝐶𝑁𝑇 + 𝑉𝑚𝛼

𝑚           

𝛼22 = (1 + 𝜈12
𝐶𝑁𝑇)𝑉𝐶𝑁𝑇𝛼22

𝐶𝑁𝑇 + (1 + 𝜈𝑚)𝑉𝑚𝛼
𝑚

− 𝜈12𝛼11 

(33) 

Which: 

𝜈12
𝐶𝑁𝑇  , 𝜈𝑚: Poisson's ratio of matrix and nanotube 

 𝜌𝑚 , 𝜌𝐶𝑁𝑇: Nanotube density and matrix 

𝛼22
𝐶𝑁𝑇  , 𝛼11

𝐶𝑁𝑇: Thermal expansion coefficient of the 

nanotube in the longitudinal and transverse directions, 

respectively 

𝛼𝑚: Matrix thermal expansion coefficient 

The results of the mixing law are in very good 

agreement with the experimental results. 

6. Extraction of state space equations 

Without considering the volume forces, the equations of 

motion can be written as the following equation: 
2

, , 2x x xz z

u

t
  


+ =


 

(34) 
2

, , 2xz x z z

w

t
  


+ =


 

in which σz and σx Axial stresses, τxz Shear stress, wandu 

Mechanical displacement in the transverse and axial 

directions, respectively, ρ Density of materials and t they 

are time. The relationship between strain and mechanical 

displacement for small deformations can be expressed as 

Equation 35. 

x

u
ε

x


=


 

w
z

z



=


 

u w
xz

z x


 
= +
 

 

(35) 

That u and w Displacements and Normal strains in the 

direction of the coordinate axes, respectively x and z they 

are. Shear strain in the plane it is xz. Using Hooke's law 

and strain-displacement equations, the stress-displacement 

equations are obtained in the following form: 

11 13x

u w
Q Q

x z


 
= +

 
 

11 33z

u w
Q Q

x z


 
= +

 
 

55xz

w u
Q

x z


  
= +   

 

(36) 

That Q11, Q33, Q13 and Q55 they are calculated as 

follows: 

𝑄11 =
𝐸11
𝛥
, 𝑄33 =

𝐸33
𝛥
, 𝑄13 = 𝜈31

𝐸11

𝛥
,

𝑄55 = 𝐺13 

𝛥 = 1 − 𝜈31𝜈313 

(37) 

It should be noted that the degree of functional or 

homogeneity of a material is reflected in the stress-strain 

relationships. In a homogeneous material, the modulus of 

elasticity E is constant in all directions. Using equations (2) 

and (4), the state space equations are obtained in the 

following form: 
2

2

z xz w

z x t

 


  
= − +

  
 

55

1
xz

u w

z x Q


 
= − +

 
 

11

33 33

1
z

w u

z

Q

Q xQ


 
= −

 
 

2 2

13 13 11
11 2 2

33 33

xz z
Q Q Q u u

Q
z Q x Q x t

 


    
= − − − + 

    
 

(38) 

The boundary conditions for the various supports are as 

follows: 

Simple 

support 

0x w = =  
(39) 
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Free support 0x xz = =  

7. Analytical solution of a simply supported beam  

First, the state space matrix is calculated for each layer, 

then the surface conditions between the layers and the 

continuity of stress and displacement are applied, and the 

overall state space matrix is obtained. Finally, by applying 

the surface conditions of the lower and upper surfaces 

(Equation 40), the equations are solved. 

The surface conditions at the top and bottom surfaces of 

the beam are as follows: 

  0,              ,
2 2

z xz

h h
at z = = = −  (40) 

The boundary conditions at the simple support are as 

follows: 

0,           0,x w at x L = = =  (41) 

Considering the boundary conditions, the following 

Fourier expansions have been considered for stresses and 

displacements  

( ) ( )

1

(z)cos
i t

m

m

u U p x e




=

=  

( ) ( )

1

(z)sin
i t

m

m

w W p x e




=

=  

( ) ( )

1

(z s) in
i t

z z m

m

p x e


 


=

=  

( ) ( )

1

(z)cos
i t

xz xz m

m

p x e


 


=

=  

( ) ( )

1

(z s) in
i t

x x m

m

p x e


 


=

=  

(42) 

In the above relationship ωt the natural frequency of the 

beam and t is the time. By substituting the above equations 

into the state space equations (4-15), the following 

relations are obtained. 

 
2z

m xzp W
z


 


= −


 

55

1
m xz

U
p W

z Q



= − +


 

3

11

333

1
z m

QW
p U

z Q Q



= +


 

(43) 

Vector δ which includes state space variables is 

considered as follows. 

 z xzU W  =  (44) 

Using the defined vector, Equations (45) can be written 

in matrix form as follows. 

d
G

dz


=  (45) 

That G is defined as follows. 

55

33

13 11
1

2

11

33

2 213

33

1

33

0 0

0 0

1
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Q 0

1

0

( 0)

m

m

m

m
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Q

Q

Q Q

Q

p

p

G Q
p

Q

Q
p p

Q





 −
 
 −
 
 

=  
 
 
− −

 

− 


 

(46) 

The solution to the differential Equations (47) in matrix 

form is as follows. 

( ) ( )0

0              

Z

Z

Gdz

z e z 


=  
(47) 

8. Semi-analytical solution of a beam with various 

supports using the differential square method  

Initially, a semi-analytical solution is performed for the 

simple support and compared with the analytical solution 

presented in the previous section, which allows the best 

case for the number of sample points to be obtained. 

To solve the semi-analytical state space equations, the 

beam is oriented in the direction x is discretized using the 

method of difference of squares with the help of N points: 

( )1
1 cos

2 1
i

iL
x

N

− 
= − 

− 
 (48) 

in which xi is the length of the it h point and L is the 

total length of the beam. The derivatives with respect to x 

are discretized as follows: 

( ) ( ) ( )
i

n N
n

ij jn
j 1x x

f x,z
A  f x ,z

x ==

 
= 

 
  (49) 

Values of the weight coefficients are calculated based 

on the Quan-Chang method according to the following 

formula: 

ij

1,

1
A    ,   

N

i r

j r ij i j r

x x
i j

x x x x= 

−
= 

− −
  

ij

1,

1
A             ,   

N

r r i i r

i j
x x= 

= =
−

  

(50) 

 

In this case, the solution process is similar to the 

analytical case for a simple support, with the difference that 
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the dependence of the state space equations on the variables 

x and its derivatives are solved using the differential square 

method and the matrices that are calculated have much 

larger dimensions than the analytical solution. First, the 

state space matrix is calculated for each layer, then the 

boundary conditions between the layers and the continuity 

of stress and displacement are applied and the overall state 

space matrix is obtained. Finally, using the stress and 

displacement relationship of the upper and lower surfaces 

of the beam, the equations are solved. 

Mode CS: 

0,    0,           0
w

u w at x
x


= = = =


 

0,                          x w at x L = = =  

(51) 

Mode CF: 

0,      0,          x 0
w

u w at
x


= = = =


 

0,                        x xz at x L = = =  

(52) 

Mode CC: 

0,        0,        0
w

u w at x
x


= = = =


 

0,        0,         
w

u w at x L
x


= = = =


 

(53) 

State space variables at a point(i)th are: 

( ) ( ) ( ) ( ) ( ) 
i

T

z xzi i i i
      δ σ , u , w , τ=  (54) 

According to Equation 54, the point state space 

equations are (i) will be as follows: 

( )

( ) ( )

i

i i

dδ
G  δ

dz
=  (55) 

By writing Equation 55 for different points in the 

solution domain, the system of total equations is obtained: 

M
z


= 


 (56) 

In which, the matrix is called the general matrix and is 

defined as follows: 

 
( )1 6

, , ,
T

z xz N
u w 

 
 =  (57) 

That: 

 1 2 N Nx y
z z z

1

σ ,σ , ,σ
T

z
N






=   

 
x y1 2 N N

1
u ,u , ,u

T

N
u 


=   

 
x y1 2 N N

1
w , w , , w

T

N
w 


=   

 
x yxz1 xz2 xzN N

1
τ , τ , , τ

T

z
N

x 


=   

 

(58) 

Considering the removal of dependency M to x and its 

derivatives, the solution to Equation (57) can be easily 

obtained. But before that, boundary conditions in the x 

direction for the boundary points must be determined and 

applied. After applying the boundary conditions, the 

dimensions of the overall matrix are reduced and Equations 

(59) change to the following form. 

b
bM

z


= 


 (59) 

The analytical solution of Equations 59 is as follows: 

 
b

0

M z

b e c

Z

Z=


 
(60) 

that the column matrix constants C column vector value 

It is at the bottom of the layer. 

9. Applying surface conditions to the upper and lower 

surfaces  

According to Equation 60, it can be written: 

( )

( )

( )

( )

( )

( )

( )

( )
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21 22 23 24

31 32 33 34

41 42 43 44

2 2

2 2
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h s s s s h

U h s s s s U h

W h s s s s W h

h s s s s h

 

 

−    
    

−    =
     −
    

−       

 
(61) 

Which we will have by applying boundary conditions. 

( )

( )

( )

( )

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0

2 2

2 2

0 0

s s s s

s s s sU h U h

s s s sW h W h

s s s s

    
    

−
    =
    −
    

    

 
(62) 

The previous equations are solved by removing 

unnecessary rows and columns. 

( )

( )
12 13

42 43

20

20

s s U h

s s W h

 −  
=    

−     
 (63) 

To analyze the free vibrations of the beam, considering 

that the left side of Equations 63 becomes zero, the natural 

frequencies of the beam have been calculated by setting the 

determinants of the coefficients equal. 

The natural frequencies in the analytical solution are 

calculated using the following equation. 

0AS =  (64) 

The natural frequencies in the semi-analytical solution 

are calculated using the following equation. 

0DS =  (65) 

To demonstrate the accuracy and precision of the 

calculations in the previous chapter, numerical results are 

presented in the form of graphs and tables for various 
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problems and materials in this chapter. The results include 

the calculation of the natural frequency of the 

nanocomposite beam FG, which has been validated 

according to the results in authoritative papers. First, the 

convergence of the numerical solution (DQ) for a simple 

support is shown and compared with the analytical 

solution. Then, to ensure the accuracy and precision of the 

method used, the results for different boundary conditions 

are compared and validated with authoritative papers. 

Next, the effect of the dimensions and percentage of 

nanotube presence (V*CNT) on the natural frequencies is 

investigated and their results are presented for comparison. 

In Table 1, the values of nanotube efficiency (iη) are shown 

for the studied nanocomposite beams. 
Table 1  

Nanotube efficiency values (Iη) 

CNT efficiency parameters 
VCNT 

0.12 0.17 0.28 

1η 1.2833 1.3414 1.3238 

2η 1.0556 1.7101 1.7380 

3η 1.0556 1.7101 1.7380 
 

10. Solution convergence DQ and comparison with 

analytical solution 

 In this section, the convergence of the differential 

square solution with increasing number of sample points is 

investigated and compared with the analytical solution. In 

Table 2, the first three modes of natural frequencies for a 

uniform distribution of nanotubes (UD) and functional 

graded distribution (FG-X) are presented. The frequencies 

presented in the table are for a nanocomposite beam with 

simply supported SS boundary conditions. According to 

the table, at the number of sample points of 9 and 10, the 

results of the semi-analytical solution have good 

convergence, and it is also seen that with increasing the 

vibration mode, the number of sample points of 

convergence increases. It is observed that the numerical 

solution provides very fast and good convergence, and its 

results are very close to the results of the analytical 

solution. 
Table 2 

 Convergence of the results of the first three modes of natural 

frequencies in the numerical solution and comparison with the 

analytical solution 

Mode Method UD FG-X 

1 DQM (N=5) 1.2243 1.3575 

              (N=6) 1.2284 1.3619 
              (N=7) 1.2287 1.3621 

              (N=8) 1.2287 1.3621 

              (N=9) 1.2287 1.3621 
 Exact 1.2290 1.3624 

2 DQM (N=5) 3.656 3.8071 

              (N=6) 3.1823 3.3353 
              (N=7) 3.2402 3.3929 

              (N=8) 3.2383 3.3910 

              (N=9) 3.2384 3.3912 
 Exact 3.2384 3.3914 

3 DQM (N=5) 4.8918 5.0376 

              (N=6) 4.9453 5.1269 

              (N=7) 5.0769 5.2219 
              (N=8) 5.2929 5.4372 

              (N=9) 5.2646 5.4089 

              (N=10) 5.2700 5.4130 
 Exact 5.2675 5.4121 

 

11. Validation of the problem-solving method  

In this section, the accuracy of the presented solution is 

examined and validation is performed. For this purpose, the 

problem conditions that are described in the articles [31] 

and [32] have been considered and the numerical results of 

the present study have been compared with the results of 

the aforementioned articles. Table 3 shows the changes of 

the first mode of the dimensionless natural frequency for 

simple-simple (SS), simple-clamped (CS) and clamped-

clamped (CC) supports. The results in this table have been 

considered in two completely analytical and numerical 

(DQ) methods for the simple support and in the numerical 

(DQ) method for the other supports. A comparison can be 

made between the results obtained from the analytical 

solution, the numerical solution and the results of the 

aforementioned articles. The results presented; compliance 

it shows a very good agreement between the two methods 

used. 

12. Effect of various boundary conditions on natural 

frequency  

To better compare the effect of boundary conditions on 

beam behavior, the first four dimensionless natural 

frequency modes for different boundary conditions are 

shown together in Table 4.
Table 3 

 First mode dimensionless natural frequency for simple-simple (SS), simple-clamped (CS) and clamped-clamped (CC) supports and comparison with the 

results of papers [31] and [32] 

CNT distribution 
Boundary 

conditions 
Present Perfect Present DQM Reference [1] Reference [2] 

UD-CNT CC - 1.6817 1.6691 1.6678 

 CS - 1.4495 1.4565 1.4556 

 SS 1.229 1.2287 1.2581 1.2576 

FGX-CNT CC - 1.7477 1.7242 1.7230 

 CS - 1.5414 1.5394 1.5385 

 SS 1.3624 1.3621 1.3859 1.3852 
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Table 4 

 The first four dimensionless natural frequency modes for different 

boundary conditions 

BC 
Mode 

1 2 3 4 

CF 0.5727 2.1128 4.2359 6.3008 

SS 1.3624 3.3914 5.4121 7.4261 

CS 1.5414 3.4651 5.4543 7.5711 
CC 1.7477 3.5353 5.5040 7.6071 

 

 

According to Table 4, the stiffer or more restricted the 

plate is in the support, the higher the natural frequency it 

will have. In the case CC has the highest natural frequency 

and CF has the lowest natural frequency. 

13. The effect of length to thickness ratio (L/h) at 

natural frequencies  

At this stage, the aim is to investigate the effect of the 

length to thickness ratio (L/h) in the dimensionless natural 

frequency of a nanocomposite beam with nanotube 

distribution FG-X. In Figure 7, the changes in the 

dimensionless natural frequency as a function of the ratio 

(L/h) for the FG-X nanocomposite beam can be seen. With 

increasing L/h, the natural frequency increases, and at low 

values, the changes in the natural frequency are very 

severe. 

 
Figure 7: Variations of dimensionless natural frequency in terms of 

ratio (L/h) for FG-X nanocomposite beam 

14. The effect of the volume fraction of the presence of 

nanotubes (V*CNT) in nanocomposite beam 

At this stage, the aim is to investigate the effect of the 

volume fraction of the presence of nanotubes (V*CNT) in 

the natural frequency of the FG-X and UD nanocomposite 

beam. With increasing V*CNT, the percentage of 

nanotubes increases. Tables 5, 6, 7 and 8 show the changes 

in the first three modes of the dimensionless natural 

frequency of the beam with CC, CS, SS and CF supports in 

terms of V*CNT, respectively. It is observed that with 

increasing the V*CNT parameter, the dimensionless 

natural frequency increases. 
Table 5 

Variations of the first three modes of the dimensionless natural 

frequency of the beam with CC supports in terms of V*CNT(L/h=20) 

V*CNT  Mode 

  1 2 3 

0.12 UD 1.6817 3.4196 5.3825 

 FG-X 1.7477 3.5353 5.5040 

0.17 UD 2.1524 4.3955 6.9415 

 FG-X 2.2368 4.5264 7.0914 

0.28 UD 2.3796 4.8195 7.5578 

 FG-X 2.4299 4.9131 7.6625 
 

Table 6 

Variations of the first three modes of the dimensionless natural 

frequency of the beam with CS supports in terms of V*CNT(L/h=20) 

V*CNT  Mode 

  1 2 3 

0.12 UD 1.0351 2.6928 4.6294 
 FG-X 1.1674 2.9170 4.8939 

0.17 UD 1.2817 3.3878 5.8838 

 FG-X 1.4518 3.6784 6.2224  

0.28 UD 1.6807 4.1134 6.8294 
 FG-X 2.1597 4.8186 7.6215 

 

Table 7 

 Variations of the first three modes of the dimensionless natural 

frequency of the beam with SS supports in terms of V*CNT(L/h=20) 

V*CNT  Mode 

  1 2 3 

0.12 UD 0.7536 2.4580 4.4434 

 FG-X 0.8842 2.7247 4.7494 

0.17 UD 0.9203 3.0632 5.6188 
 FG-X 1.0839 3.4085 6.0155 

0.28 UD 1.1262 3.5825 6.3696 

 FG-X 1.3053 3.8759 6.6379 
 

Table 8 

 Variations of the first three modes of the dimensionless natural 

frequency of the beam with CF supports in terms of V*CNT(L/h=20) 

V*CNT  Mode 

  1 2 3 

0.12 UD 0.3361 1.6040 3.5326 

 FG-X 0.2814 1.4311 3.2575 

0.17 UD 0.3416 1.7765 4.0979 
 FG-X 0.4092 1.9990 4.4523  

0.28 UD 0.4237 2.0963 4.6998 

 FG-X 0.5033 2.3040 4.9895 
 

 

15.  Conclusion  

In this research to the vibration analysis of a Nano-beam 

unidirectional FGM (functional properties along the beam 

thickness) with carbon nanotubes and a Layer-Metal and 

ceramic braces on various supports w whether simple, 

complex, etc. became. The solution method used is the 

mixing method and, in the direction of thickness, the 

numerical method of differential quadrature DQ and the 

assumptions in this research in this way it is that the 

material properties change along the thickness as an 
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exponential function slow, the beam is under plane tension, 

no there is no thickness variation or discontinuity in the 

longitudinal direction of the beam, Poisson's ratio in the 

layer FGM is constant along its thickness. Accordingly, the 

following results have been obtained: 

1. The stiffer, or more constrained, the sheet in the 

support will have a higher natural frequency. 

2. In the state CC has the highest natural frequency 

and CF has the lowest natural frequency. 

3. By increasing the length to thickness ratio L/h the 

natural frequency increases. 

4. When the length to thickness ratio is low, the 

natural frequency changes are very severe. 

5. By increasing the volume fraction parameter of 

the presence of nanotubes V*CNT increases the 

dimensionless natural frequency. 

6. In the case where the volume fraction of 

nanotubes in the beam FGM is fixed, relying 

sometimes YRadar-GYRadar has the highest 

natural frequency in all modes. 

7. In the case where the volume fraction of 

nanotubes in the beam FGM is fixed, relying 

sometimes YRadar-free has the lowest natural 

frequency of all modes. 

8. In any case of the volume fraction of nanotubes in 

the beam FGM the first mode has the lowest 

frequency and subsequent modes have a higher 

frequency than the previous mode. 
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