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The complex nature of slope engineering presents considerable challenges in accurately 

predicting slope stability using traditional methodologies. Due to the serious implications 

that can arise from slope failures, it is crucial to implement the most effective techniques for 

assessing slope stability. This study investigates a hybrid approach that integrates BPSO 

with SVC to enhance predictive accuracy in slope stability assessment. The methodology 

employs BPSO to optimize the selection of features that are critical to the prediction process. 

Additionally, grid search technique is utilized for fine-tuning the hyperparameters of the 

SVC. The research evaluates the performance of three SVC kernel functions: linear, 

polynomial and rbf. For the predictive analysis, six features identified as potentially 

influential were selected: height of the slope (H), pore water ratio (ru), unit weight of the 

soil (Ƴ), cohesion of the soil (c), slope angle (β), and angle of internal friction (ɸ).  To 

enhance the generalization capability of the classification models, a 5-fold cross-validation 

(CV) approach was implemented. The effectiveness of the models was evaluated using 

various metrics, including the area under the curve (AUC) and overall accuracy of the 

predictions. The findings of the study indicate that the hybrid approach, particularly the SVC 

employing the rbf kernel, significantly outperformed the other models in terms of prediction 

accuracy, achieving an AUC of 0.735 and an accuracy rate of 0.725. This underscores the 

potential of the proposed hybrid method as a valuable tool for accurately predicting slope 

stability and mitigating risks associated with slope failures in engineering applications. 
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1. Introduction 

Slope stability evaluation represents a critical area of 

research within the field of slope engineering, as it directly 

influences the safety and effectiveness of various 

construction and geological projects. The processes 

underlying slope deformation and failure are inherently 

complex and involve intricate geological mechanisms. A 
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multitude of factors contribute to slope stability, many of 

which are uncertain in nature, making it challenging to 

conduct accurate evaluations using conventional 

theoretical analyses and numerical methodologies. 

Traditional techniques, such as the finite element method 

[1], discontinuous deformation analysis [2], and limit 

equilibrium method [3], often fall short in accounting for 

the intricacies involved in slope behavior. Slope 
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engineering itself is characterized as a complex, non-linear, 

and dynamic system that is susceptible to various 

uncertainties. These uncertainties manifest through 

geological and engineering factors that exhibit 

randomness, fuzziness, and variability, all of which 

significantly influence the overall stability of slopes. One 

of the key challenges in analyzing slope stability is the 

highly non-linear relationship that exists between slope 

stability and the myriad influencing factors. Conventional 

deterministic approaches often fail to capture this non-

linearity, leading to potentially inaccurate assessments. 

Consequently, there is a growing recognition within the 

research community of the necessity to move beyond 

traditional deterministic models. This shift aims to embrace 

a more holistic understanding of the uncertainties 

associated with the diverse parameters impacting slope 

stability [4–6]. Given the complex nature of slope 

engineering, it is vital to incorporate a broad spectrum of 

geological and engineering considerations, including the 

unpredictability and variability of these factors, when 

assessing stability. This evolving perspective emphasizes 

the urgency for researchers to adopt advanced 

methodologies that can systematically account for these 

uncertainties. Ongoing research efforts aim to refine 

numerical and analytical modeling techniques to better 

predict possible slope behaviors. By enhancing predictive 

accuracy, these efforts not only aim to improve 

understanding of slope stability but also seek to minimize 

potential losses and inform appropriate preventive 

measures. 

With the advancement of computational techniques, 

there is a growing opportunity for researchers to implement 

diverse machine learning methods as alternative 

approaches for slope stability analysis. By evaluating 

critical parameters such as slope geometry and material 

properties, these techniques have the potential to deliver 

valuable insights and significantly enhance the accuracy of 

slope stability assessments. Nanehkaran et al. [7] 

conducted a comparative study evaluating various machine 

learning techniques for slope stability prediction. Their 

research included random forest, multilayer perceptron, 

support vector machines, and decision trees. Similarly, Bui 

et al. [8] employed five distinct machine learning 

approaches, namely support vector regression, Gaussian 

process regression, multilayer perceptron, multiple linear 

regression, and simple linear regression. Mahmoodzadeh 

et al. [9] proposed six machine learning techniques for 

factor of safety (FOS) prediction, which included deep 

neural networks, Gaussian process regression, support 

vector regression, k-nearest neighbors, long short-term 

memory, and decision trees. Nanehkaran et al. [10] further 

compared five machine learning techniques for FOS 

prediction, specifically k-nearest neighbors, support vector 

machines, decision trees, multilayer perceptron, and 

random forest. Moayedi et al. [11] conducted a 

comparative analysis among seven machine learning 

techniques for FOS prediction, including an improved 

support vector machine utilizing sequential minimal 

optimization, multiple linear regression, radial basis 

function regression, random tree, lazy k-nearest neighbor, 

multilayer perceptron, and random forest. Bai et al. [12] 

performed a comparative study among eight machine 

learning techniques for FOS prediction, which comprised 

gradient boosting decision tree, k-nearest neighbor 

algorithm, decision tree, guided clustering algorithm, 

artificial neural network, support vector machine, random 

forest, and AdaBoost algorithm.  

Hybrid models are gaining popularity among 

researchers due to their ability to enhance accuracy and 

reliability by combining multiple algorithms. These 

models leverage the strengths of individual algorithms and 

compensate for their weaknesses, leading to improved 

performance across various datasets [13, 14]. For example, 

integrating optimization techniques like Binary Particle 

Swarm Optimization (BPSO), Genetic Optimization, Grid 

Search, Random Search etc. with machine learning 

classifiers such as Support Vector Classifiers (SVC), 

Random Forest (RF), XGBoost, CatBoost etc.  allows for 

efficient feature selection while maintaining high 

prediction accuracy. Luo et al. [15] conducted an extensive 

slope stability analysis comparing the performance of three 

standalone machine learning algorithms—k-nearest 

neighbor (KNN), support vector machine (SVM), and 

classification and regression tree (CART)—with a hybrid 

algorithm, the particle swarm optimization-cubist 

algorithm (PSO-CA). Their study highlighted the potential 

advantages of integrating optimization techniques with 

machine learning models to enhance predictive accuracy. 

Koopialipoor et al. [16] investigated the efficacy of four 

hybrid machine learning techniques—genetic algorithm-

artificial neural network (GA-ANN), artificial bee colony-

artificial neural network (ABC-ANN), imperialist 

competitive algorithm-artificial neural network (ICA-

ANN), and particle swarm optimization-artificial neural 

network (PSO-ANN)—for slope stability prediction. Their 

research demonstrated that hybrid models could surpass 

standalone methods by optimizing the training process and 

improving prediction reliability. Pham et al. [17] 

performed a comprehensive comparative study of eight 

machine learning models—decision tree (DT), k-nearest 

neighbor (KNN), artificial neural network (ANN), 

Gaussian process (GP), Gaussian naive Bayes (GNB), 

quadratic discriminant analysis (QDA), support vector 

machine (SVM), and stochastic gradient descent (SGD)—

as well as their combinations in ensemble approaches for 

slope stability prediction. Their findings underscored the 

effectiveness of ensemble learning in capturing complex 

relationships within data. Gordan et al. [18] compared 
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artificial neural networks (ANN) with a particle swarm 

optimization-enhanced artificial neural network (PSO-

ANN) for predicting the factor of safety (FOS) in 

homogeneous slopes. Their findings emphasized the 

superior performance of the hybrid PSO-ANN model in 

improving prediction accuracy. Zhang et al. [19] evaluated 

the performance of four machine learning models—

XGBoost, support vector machine (SVM), random forest 

(RF), and logistic regression (LR)—in the context of slope 

stability prediction. Their results illustrated the 

applicability of contemporary algorithms, such as 

XGBoost, in achieving high predictive accuracy. Kardani 

et al. [20] developed a robust hybrid stacking model 

utilizing eleven machine learning techniques, including 

random forest (RF), decision tree (DT), k-nearest neighbor 

(KNN), extreme gradient boosting (XGB), logistic 

regression (LR), naive Bayes (NB), multilayer perceptron 

artificial neural networks (MLPANN), bagging classifier 

(BC), linear discriminant analysis (LDA), support vector 

classifier (SVC), and extremely randomized trees (ETs). 

The artificial bee colony (ABC) algorithm was employed 

to determine the optimal combination of base classifiers, 

leading to significant enhancements in the model's 

predictive performance. Qi et al. [21] introduced a hybrid 

model that integrates the firefly algorithm with six machine 

learning techniques—gradient boosting machine (GBM), 

logistic regression (LR), support vector machine (SVM), 

random forest (RF), multilayer perceptron neural network 

(MLP), and decision tree (DT)—to evaluate their 

effectiveness in precise slope stability prediction. Their 

approach underscored the advantages of metaheuristic 

algorithms in improving model accuracy and reliability. 

Zhou et al. [22] applied the gradient boosting machine 

(GBM) algorithm to slope stability prediction, 

demonstrating its effectiveness in managing complex 

datasets and providing accurate predictions. These 

collective studies reflect a growing trend in the use of 

advanced and hybrid machine learning models within 

geotechnical engineering, highlighting their potential to 

effectively address the challenges associated with slope 

stability analysis and prediction. These approaches reduce 

computational complexity and enhance the model's ability 

to generalize to unseen data. The rise of computational 

resources and advanced frameworks has made hybrid 

models increasingly applicable in real-world geotechnical 

problems, making them essential tools for predictive 

modeling in complex engineering scenarios. 

The aforementioned machine learning models discussed 

play a vital role in advancing our understanding of slope 

behavior and the complex interactions that influence slope 

stability. However, the complexity of slope stability issues 

can vary, even when utilizing the same dataset. This 

variability is attributed to the inherent limitations of each 

model, as different algorithms operate under distinct 

assumptions and capabilities. The primary objective of 

slope stability analysis is to achieve accurate and reliable 

predictions, which necessitates the development and 

application of more sophisticated machine learning 

algorithms. To effectively address these challenges, it is 

essential to identify and utilize advanced hybrid machine 

learning algorithms that can provide better outcomes 

compared to traditional standalone models. The findings 

from the studies reviewed indicate that hybrid learning 

algorithms, which combine machine learning with 

optimization techniques, present a promising avenue for 

predicting slope stability. Nonetheless, there is a noticeable 

gap in the literature regarding the focused investigation of 

the various features influencing slope stability, which 

warrants thorough investigation. A detailed analysis of 

model behavior using different feature combinations can 

yield valuable insights into the dynamics of slope stability, 

ultimately enhancing model robustness. Optimization 

algorithms are instrumental in this regard, as they can 

facilitate the selection of the most significant features and 

refine model parameters to maximize performance. To 

further advance this field, future research should prioritize 

the exploration of innovative hybrid learning algorithms 

that integrate cutting-edge machine learning techniques 

with optimization strategies. This comprehensive approach 

can significantly improve predictive capabilities while 

deepening our understanding of the critical factors 

affecting slope stability, thereby contributing to the 

development of safer and more effective geotechnical 

solutions. 

The objective of this study is to evaluate the 

performance of various kernel functions—specifically 

linear, polynomial, and radial basis function (RBF)—in the 

Support Vector Classifier (SVC) integrated with Binary 

Particle Swarm Optimization (BPSO), with the specific 

aim of predicting slope stability. The research will 

thoroughly explore and assess the effectiveness of SVC 

across different kernel functions and feature combinations. 

The selection of the SVC model is attributed to its growing 

prominence and application in engineering disciplines. 

This study aims to fill the existing gap in literature by 

providing a comprehensive evaluation of the performance 

and applicability of these methodologies. 

2. Machine Learning Techniques 

2.1. Support Vector Classifier 

The Support Vector Classifier (SVC) is a sophisticated 

machine learning technique that utilizes a nonlinear 

transformation, characterized by an inner product function, 

to effectively map the input space into a higher-

dimensional feature space. The theoretical underpinnings 
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of SVC center on key concepts such as linear separability, 

decision boundaries, and margin maximization. The 

seminal work of Vapnik and Chervonenkis (1963) 

introduced the concept of the Vapnik-Chervonenkis (VC) 

dimension, which serves as an essential framework for 

understanding the generalization capabilities of SVC [23]. 

The VC dimension quantifies the capacity or complexity of 

a hypothesis space, representing the set of potential 

decision boundaries that a learning algorithm can derive. 

Specifically, in the realm of SVC, the VC dimension 

indicates the maximum number of points that can be 

perfectly separated by the decision boundary established 

by the algorithm. This dimension is pivotal in evaluating 

the balance between model complexity and the capacity to 

generalize effectively to previously unseen data. 

Furthermore, the introduction of kernel functions by Boser 

et al. (1992) [24] significantly enhanced the ability of SVC 

to process non-linearly separable data. In 1995, Cortes and 

Vapnik [25] presented the formulation of the Support 

Vector Classifier, highlighting its ability to identify 

optimal separating hyperplanes characterized by maximum 

margins. This formulation incorporates two critical 

components: the slack variable, ξ, which quantifies the 

deviation of a data point from the ideal condition, and the 

penalty factor, C, which delineates the trade-off between 

the number of misclassifications in the training dataset. 

The decision functions for different conditions are: 

For Linearly Separable: 

𝑦𝑖[(𝑤
𝑇𝑥𝑖) + 𝑏] − 1 ≥ 0 (1) 

For Linearly Inseparable; 

𝑦𝑖[(𝑤
𝑇𝑥𝑖) + 𝑏] ≥ 1 − 𝜉𝑖 (2) 

To minimize, 

1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

 
(3) 

For Non-linear Classification:  

Linear Kernel: 

𝑘(𝑥𝑖𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (4) 

Polynomial Kernel: 

𝑘(𝑥𝑖𝑥𝑗) = (Ƴ𝑥𝑖
𝑇 + 𝑟)𝑑 , Ƴ > 0 (5) 

Radial Basis Function (RBF): 

𝑘(𝑥𝑖𝑥𝑗) = 𝑒(Ƴ||𝑥𝑖−𝑥𝑗||
2), Ƴ > 0 (6) 

Sigmoid Kernel:  

𝑘(𝑥𝑖𝑥𝑗) = tan⁡(Ƴ𝑥𝑖
𝑇𝑥𝑗 + 𝑟) (7) 

Where w is an adaptive weight factor, x is an input vector, 

b is bias and wT x is an inner product of w and x and Ƴ, r 

and d are kernel parameters.  

     Numerous studies have concentrated on enhancing 

the training process and optimizing the performance of 

support vector classification (SVC). Platt (1999) [26] 

introduced a sequential minimal optimization algorithm 

that significantly improved the efficiency of training with 

large-scale datasets. Furthermore, Joachims (2006) [27] 

presented the concept of the Budgeted Support Vector 

Machine, which facilitated quicker training times by 

selecting a relevant subset of support vectors. Additional 

research has investigated the utilization of parallel 

computing, distributed learning, and active learning 

techniques to accelerate the training process and enhance 

scalability. From its foundational theoretical principles to 

its diverse applications across various domains, SVC has 

demonstrated notable performance and versatility. Despite 

existing challenges, such as parameter tuning and 

scalability, ongoing research endeavors aim to address 

these issues and further enhance the algorithm's 

effectiveness. An in-depth understanding of the 

advancements and future directions in SVC will enable 

researchers to contribute meaningfully to its continued 

development and explore its potential for tackling complex 

classification challenges. 

2.2. Binary Particle Swarm Optimization (BPSO) 

Binary Particle Swarm Optimization (BPSO) is a type 

of optimization algorithm used to solve binary 

optimization problems. In binary optimization problems, 

the goal is to find the binary string that maximizes or 

minimizes a given objective function. BPSO is a heuristic 

method that simulates the behavior of a swarm of particles 

in a multi-dimensional search space. In BPSO, the particles 

represent positions in a binary space where each element 

of a particle's position vector can only take on the values of 

0 or 1. In other words, xi є 𝐵𝑛𝑥 or xij can only be 0 or 1. 

When a particle's position is updated, it means flipping one 

or more bits in the binary string representation of the 

particle. This effectively causes the particle to move to 

different corners of a hypercube in the binary search space. 

The flipping of bits can result in the particle moving closer 

or farther away from the optimal solution. 

    The binary PSO algorithm begins by randomly 

generating a population of particles, after which their 

positions and velocities are initialized. Following this, the 

fitness function is calculated for each particle, and the best 

positions of both the individual particles and the entire 

swarm are updated accordingly. The swarm best position 

refers to the position of the particle that has the best fitness 

function value across the entire population. Followed by 

the velocity and position of each particle is updated using 

the following equation: 

𝑉[𝑖,𝑗] = 𝑤 ∗ 𝑉[𝑖,𝑗] + 𝑐1 ∗ 𝑟𝑎𝑛𝑑⁡1 ∗ (𝑝𝑏𝑒𝑠𝑡[𝑖,𝑗] − 𝑥[𝑖,𝑗])

+ 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡[𝑖,𝑗] − 𝑥[𝑖,𝑗]) 

(8) 

𝑥[𝑖,𝑗] = 1, 𝑖𝑓⁡𝑟𝑎𝑛𝑑(0) < 𝑠𝑖𝑔𝑚𝑜𝑖𝑑⁡(𝑉[𝑖,𝑗]) 

𝑥[𝑖,𝑗] = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where V [i,j] is the velocity of the jth dimension of the ith 

particle, w is the inertia weight, c1 and c2 are the cognitive 

and social learning factors, rand1 and rand2 are random 

numbers between 0 and 1, pbest[i,j] is the best position of the 
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ith particle in the jth dimension, and gbest[j] is the best position 

of the swarm in the jth dimension. The sigmoid function is 

used to convert the velocity into a probability of flipping 

the bit from 0 to 1. 

    The BPSO operates by defining velocities and 

particle trajectories in terms of the probability of each bit 

being set to 1 or 0. For instance, a velocity Vij (t) of 0.3 

indicates a 30% chance of the corresponding bit being set 

to 1, and a 70% chance of it being set to 0. To ensure that 

velocities are interpreted as probabilities, they are typically 

restricted to the range of [0, 1]. There are various methods 

for normalizing velocities so that Vij ∈ [0, 1]. One common 

approach is to divide each vij by the maximum velocity, 

Vmax,j. However, if Vmax,j is large and the actual velocity Vij 

(t) << Vmax,j for all time steps, this will reduce the range of 

velocities, thereby decreasing the chances of a position to 

change to bit 1. For example, if Vmax,j = 10 and Vij (t) = 5, 

the normalized velocity V'ij (t) would be 0.5, indicating a 

mere 50% chance that xij (t + 1) = 1. Using this 

normalization method can result in premature convergence 

to suboptimal solutions, as it limits the exploration abilities 

of the algorithm. 

The velocity normalization is obtained by using sigmoid 

function 

𝑉𝑖𝑗(t) = ⁡sig (𝑉𝑖𝑗(t)) = ⁡
1

1 +⁡𝑒−𝑉𝑖𝑗(𝑡)
⁡ 

(9) 

Using Eq. (9), the position update changes to  

xij (t+1) = {
1, 𝑖𝑓⁡𝑟𝑖𝑗(𝑡) < 𝑠𝑖𝑔⁡(𝑉𝑖𝑗(𝑡 + 1))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

Where rij is a uniform random number in the range [0,1]. 

The more detailed expressions can be referred at [28]. 

3. Materials and Methodology 

3.1. Data Preprocessing 

Developing a classification model for slope stability 

necessitates the careful selection of features that play a 

critical role in influencing the outcome. The process of 

feature selection is pivotal in reducing computational 

complexity and addressing challenges posed by high-

dimensional data. By systematically identifying and 

retaining the most relevant features, we streamline the 

learning process, ensuring the model focuses on the 

essential factors impacting slope stability. This approach 

not only enhances the efficiency of model training but also 

mitigates issues like overfitting and redundant 

computations associated with excessive dimensionality. 

Ultimately, this strategy contributes to the creation of a 

robust and reliable classification model capable of 

accurately predicting slope stability. 

    Key features such as pore water pressure ratio (ru), 

slope height (H), unit weight (Ƴ), cohesion (c), slope angle 

(β), and the angle of internal friction (ɸ) have been widely 

acknowledged as critical parameters for slope stability 

prediction. These features capture the essential 

geotechnical and physical properties influencing slope 

behavior. For this study, a dataset comprising 444 slope 

stability cases, categorized into stable (1) and unstable (0) 

classifications, serves as the foundation for analysis. An 

illustrative breakdown of these classifications is provided 

in Figure 1. To further refine the dataset and enhance the 

analysis, normalization is applied to all features, as 

described in Equation (11). By scaling the data to a uniform 

range, this step minimizes potential biases, improves the 

algorithm's convergence during training, and enhances the 

model's ability to generalize effectively to unseen cases. 

Consequently, the normalized dataset facilitates the 

development of a highly accurate classification model 

capable of delivering reliable slope stability predictions 

across diverse scenarios. 

⁡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥 −⁡𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −⁡𝑥𝑚𝑖𝑛

 (11) 

where, y is a normalized input parameter, x is the 

original input parameter, xmax is the maximum parameter 

and xmin is the minimum parameter.

  

Figure 1. Dataset Pie Chart Figure 2. Correlation Matrix of Dataset 
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The variability and distribution of the input features 

depicted in Figure 2 demonstrate a strong positive 

correlation between the features Ƴ and β. Additionally, a 

significant relationship is noted between ɸ and Ƴ, 

suggesting that these features are interdependent and may 

jointly influence predictions related to slope stability. In 

contrast, the correlation matrix reveals that certain features, 

such as the ru and c, exhibit weaker correlations with other 

variables. This suggests that, while these features may have 

independent effects on slope stability, their interactions 

with other factors are limited. 

    Insights derived from the correlation matrix are 

essential for informed feature selection. Highly correlated 

features can introduce redundancy within the model, which 

may elevate computational complexity without 

substantially enhancing predictive accuracy. Conversely, 

features with low correlations, though less significant on 

their own, can still contribute to diversity and enhance the 

robustness of the model when utilized in combination. 

Striking a balance in feature selection is imperative for 

optimizing the feature set to maximize predictive 

performance while ensuring computational efficiency. 

    The violin plot illustrated in Figure 3 provides a 

comprehensive visualization of the distribution and density 

of the dataset across the various features under 

consideration. Each violin plot corresponds to a specific 

feature, with its shape offering valuable insights into the 

underlying data distribution. The width of the violin at any 

given point is indicative of the density of data at that value, 

wider sections signify areas with a higher concentration of 

data points, while narrower sections reflect regions of 

lower density. The horizontal line within each violin 

denotes the median value of the respective feature, serving 

as a reference for central tendency and aiding in the 

identification of symmetrical distribution or skewness in 

the data. Furthermore, the presence of tails at both ends of 

the violin provides a visual indication of the data's range, 

thus highlighting any potential outliers or extremes. 

    The variables Ƴ, ɸ, β, and ru demonstrate a broad 

distribution, as evidenced by the diverse shapes of their 

corresponding violins. This broadness suggests a 

significant dispersion of data points across a wide range of 

values, indicating high variability in these features, which 

could be critical in influencing slope stability. In contrast, 

the variables c and H reveal a more narrowly shaped violin, 

implying that their data points are densely clustered around 

specific values. This concentration indicates lower 

variability and more consistent values compared to the 

previously mentioned features. The narrow shape 

highlights a higher frequency of data points near the 

median, with a reduced occurrence of extreme values.  

 

Figure 3. Violin Plots showing distribution of slope cases 
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This differentiation underscores that features like Ƴ and 

β may exert a broader influence due to their variability, 

while features such as c and H may contribute more stable 

and consistent inputs to the model. These insights are vital 

for understanding the significance of each feature in the 

analysis of slope stability and for optimizing overall model 

performance. 

3.2. Model Development and Optimization 

This study examines the applicability of SVC utilizing 

three distinct kernel functions: polynomial, linear, and 

radial basis function (RBF). The research employs Binary 

Particle Swarm Optimization (BPSO) for feature selection, 

as illustrated in Figure 4, which outlines the sequential 

process of BPSO-SVC. The primary objective of this 

approach is to enhance the effectiveness of SVC by 

integrating two critical tasks: the selection of relevant 

feature subsets from a dataset and the optimization of SVM 

parameters. In the BPSO framework, each particle in the 

swarm represents a potential feature subset, with a binary 

positional vector indicating the presence (1) or absence (0) 

of specific features. The classification accuracy of each 

subset is evaluated through a defined fitness function. 

Importantly, the fitness function that yields the highest 

accuracy is utilized to assess solutions and update particle 

positions throughout the iterative process. This 

methodology aims to identify feature subsets that 

significantly contribute to achieving precise classification 

outcomes. Once the best-performing subset is identified, 

SVC is employed. The optimized features derived from 

BPSO are subsequently applied to train and test the dataset 

(Table 1), utilizing the tuned SVC to facilitate improved 

classification results. The combination of hyperparameters 

utilized by BPSO are shown in Table 2. 

For supervised classification problems, evaluating the 

performance of classification models on new data is critical 

to understanding their capacity for generalization. 

Tale 1. 

Feature optimization using BPSO 

Models Features 

Υ c φ β H ru 

SVC_rbf 0 1 1 1 0 1 
SVC_linear 1 1 1 0 1 0 

SVC_poly 0 0 1 0 0 1 

0 = Unselected feature 1 = Selected feature 
 

Table 2  

Utilized Hyperparameters for feature optimization using BPSO 

Parameters Values 

Acceleration coefficients (c1,c2) [2,2] 
Inertia Weight (w) 0.9 

Number of dimensions (k) 7 

Number of particles (n_particles) 50 
Iterations (iter) 500 

alpha [1.0] 
 

 

 

 

Figure 4. Flow Chart of the BPSO-SVC model 

For supervised classification problems, evaluating the 

performance of classification models on new data is critical 

to understanding their capacity for generalization. 

Typically, the dataset is divided into two distinct subsets: 

the training set and the testing set. The training set, which 

comprises the majority of the data, is utilized to train the 

model and optimize hyperparameters. Conversely, the 

testing set, which constitutes a smaller portion of the 

dataset, is reserved exclusively for assessing the model’s 

ability to generalize to new, unseen instances. In this study,  

70% of the original dataset, amounting to 311 cases, has 

been designated as the training set, while around 30%, 

corresponding to 133 cases, has been allocated as the 

testing set. This division ensures that the model is trained 

on a diverse range of data while maintaining a separate, 

independent subset for a rigorous evaluation of its 

performance on unseen data. The training process for each 

kernel function involves the exploration of various 

combinations of hyperparameters, as detailed in the 

accompanying Table 3. By employing grid search 

technique, optimal hyperparameters of are identified, 
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facilitating the achievement of the best model performance. 

These optimal parameters are subsequently applied for 

making predictions on unseen data, thereby validating the 

model's effectiveness in real-world applications. 

Table 3  

SVC optimal hyperparameters using grid search 

Model Hyperparameters Optimal 
Hyperparameters 

SVC_poly C = [1 – 200]; step size =5 186 

Degree = [1 – 6] 2 

SVC_linear C = [1 – 200]; step size =5 11 
SVC_rbf C = [1 – 200]; step size =5 41 

 

The SVC model with different kernels is assessed using 

a technique known as 5-fold cross-validation. This 

approach enhances the robustness of the model and its 

ability to generalize to new data. The Area Under the Curve 

(AUC) metric serves as a comprehensive measure of the 

model's overall performance across both the training and 

testing sets. By considering the model's predictive 

capacity, particularly its ability to discriminate between 

classes under varying thresholds, the AUC metric enables 

a thorough examination and validation of the machine 

learning algorithm's capability to capture underlying 

patterns and generalize effectively to previously 

encountered instances. 

4. Results and Discussion 

    The study employs a hybrid approach incorporating 

BPSO-SVC to assess its efficacy in predicting slope 

stability. The BPSO algorithm is utilized to determine 

optimal feature combinations for each SVC kernel 

function, and subsequent grid search optimization is 

conducted to fine-tune the hyperparameters of the SVC 

models. The performance of the classifiers is evaluated 

using various metrics, including the AUC scores. The 

findings indicate that the AUC scores for the models are as 

follows: SVC_linear at 0.671, SVC_poly at 0.681, and 

SVC_rbf at 0.735 (Figure 5). The observed differences in 

AUC values can be attributed to variations in the 

underlying algorithms, model complexity, and each 

classifier's capacity to capture the relationships between 

features and the target variable. Notably, SVC_rbf 

achieved the highest AUC score, signifying its superior 

discriminatory ability and overall performance in 

comparison to the other models. 

A detailed analysis of the confusion matrices (as 

illustrated in Figure 6) highlights the misclassification 

counts for each model: SVC_linear exhibited 45 

misclassifications, SVC_poly had 43, while SVC_rbf 

recorded the lowest number at 35. This reduced error rate 

 

Figure 5. ROC curves of classification models 
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Figure 6. Confusion matrix of classification models 

 

Figure 7. Sensitivity of classification models 

 

Figure 8. Evaluation metrics of classification models 
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for SVC_rbf further corroborates its effectiveness in 

accurately classifying slope stability cases. Furthermore, 

the sensitivity analysis (depicted in Figure 7) reveals 

notable performance disparities, with SVC_linear 

achieving the highest sensitivity score of 0.812, followed 

by SVC_poly at 0.718, and SVC_rbf at 0.640. Although 

SVC_linear excels in sensitivity, SVC_rbf demonstrates a 

more balanced performance across other critical metrics, 

including specificity (0.828), accuracy (0.725), and kappa 

(0.472) as shown in Figure 8. Consequently, SVC_rbf 

emerges as the most robust and reliable model for slope 

stability classification. 

5. Conclusion 

This study illustrates the efficacy of a hybrid approach 

that integrates Binary Particle Swarm Optimization 

(BPSO) with a Support Vector Classifier (SVC) for 

predicting slope stability. By employing BPSO to optimize 

feature selection and utilizing grid search for fine-tuning 

the hyperparameters of the SVC, the research assessed the 

performance of three distinct SVC kernel functions: linear, 

polynomial, and radial basis function (RBF). Notably, the 

SVC employing the RBF kernel consistently surpassed the 

other models across key performance metrics, achieving 

the highest Area Under the Curve (AUC) score of 0.735, 

the fewest misclassification errors (35), and the highest 

specificity rate of 0.828. These findings underscore its 

superior capability to effectively differentiate between 

stable and unstable slope conditions. 

    While the SVC with the linear kernel demonstrated 

the highest sensitivity at 0.812, it exhibited limitations in 

other metrics such as specificity and overall accuracy, 

rendering it less suitable for balanced classification tasks. 

The SVC with the polynomial kernel displayed 

intermediate performance, with an AUC of 0.681 and a 

comparatively lower number of misclassifications (43). 

However, the comprehensive performance profile of the 

SVC with the RBF kernel—characterized by strong 

discriminatory power and lower error rates—solidifies its 

status as the most reliable and robust classifier for this 

application. This research highlights the potential of hybrid 

methodologies like BPSO-SVC to advance predictive 

modeling in slope stability analysis through enhanced 

optimization of both feature selection and model 

parameters. Future investigations could benefit from 

exploring the integration of additional optimization 

algorithms, incorporating ensemble learning techniques, or 

evaluating alternative kernel functions to further improve 

model performance and generalizability. This study lays 

the groundwork for the application of hybrid approaches in 

addressing complex geotechnical challenges with greater 

accuracy and reliability. 
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