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In this review paper, the applications of machine learning, computational methods, and 

robotics to bridge design are considered to help improve structure integrity and resilience. It 

describes a variety of computational methods, including finite element analysis (FEA) and 

computational fluid dynamics (CFD), that have been used to calculate failure modes and 

evaluate the dynamic behavior of bridge structures in extreme conditions, such as 

earthquakes and floods. It also highlights robotics’ potential to streamline inspection 

techniques, showing new robotic systems for effective bridge monitoring. Additionally, it 

points out issues related to data shortages and implementation difficulty and presents future 

research priorities, such as the need for powerful machine learning algorithms and the use 

of Internet of Things (IoT) solutions for real-time monitoring. In summary, the paper 

highlights the life-changing impact of these technologies on the safety and reliability of 

bridge systems. 
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1. Introduction 

Machine learning, computation, and robotics combined 

have revolutionized so many disciplines that bridge 

engineering does not have any place. In recent years, these 

technologies have increasingly been used to design, 

monitor, service, and inspect bridges. Machine learning is 

a subset of artificial intelligence (AI), and it uses 

algorithms that can look at enormous data sets, learn from 

them, and make inferences or decisions based on them [1]. 

With this feature, engineers can measure structural health 
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with greater precision and accuracy, which increases the 

life-cycle safety of bridges.  

Computational tools such as numerical simulations and 

optimization techniques are used to develop and analyze 

bridge systems. They allow engineers to simulate advanced 

behaviors with multiple load loads and make better design 

decisions [2]. Combining computing hardware with 

machine learning algorithms, engineers can produce 

predictive maintenance algorithms to increase the service 

life of bridges at reduced costs and operating times [3]. 

The history of bridge engineering is shaped by robotics, 

too. Thanks to the use of robotics, automation has become 
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possible for automatic inspection in real time and early 

detection of any potential problems in bridge structures [4]. 

These robots could even do something dangerous or 

challenging for human inspectors, like navigating narrow 

hallways or performing inspections in severe weather. 

The combination of machine learning, robotics, and 

computation improves the quality of bridge tests as well as 

reduces administrative work in the engineering industry 

[5]. Keeping pace with this interdisciplinary process, the 

new best practice in bridge engineering will be safer, more 

effective, and more predictive. Thus, an exhaustive review 

of applications, limitations, and future challenges of these 

technologies in bridge engineering is needed. 

Overall, combining machine learning, computational 

techniques, and robotics in bridge engineering is a 

revolutionary step toward better design, repair, and 

management of bridge infrastructure and is therefore an 

emerging field of research and application [6]. 

2. Applications of Machine Learning in Bridge 

Engineering  

Structural Health Assessment: Machine learning 

algorithms are used to use the real-time data from bridge 

sensors to monitor the bridge’s health and integrity. This 

way it can be used to catch problems before they become 

more severe.  

Bridge Inspection and Condition Forecast: Machine 

learning algorithms are used to optimize bridge inspection 

and condition forecast models. By considering historical 

inspection data, these algorithms will predict possible 

future states, saving time on maintenance and money. 

Reinforced Concrete (RC) Bridge Design and 

Inspection: Machine learning technology is applied in RC 

bridge design and inspection. These procedures help in 

resilient design decisions and accurate inspections [7]. 

Wind Engineering: Machine learning models in bridge 

wind engineering are used to model the impact of wind 

loads on bridges. It is an application that is very important 

for keeping bridges safe and stable in the face of changing 

wind conditions. 

Load Capacity Rating: Decision trees and random 

forests are used to rank bridge populations on their load 

capacity. This application optimizes the usage by giving 

reliable estimations of current bridges’ load-bearing 

capacity. 

Time Series Prediction: Machine learning is used to 

implement time series prediction methods in coastal bridge 

engineering to be proactive based on time-series trends [8]. 

Bridge Pier Scour Prediction: Machine learning tools 

can help in scour around bridge piers by going through all 

models’ reviews. This information is essential for keeping 

bridge foundations in excellent shape and avoiding 

catastrophic erosion failure [9]. 

Monitoring Technology Selection: Use case of concrete 

and steel bridge structural health monitoring (SHM) using 

machine learning infers monitoring technologies. This 

technique of tuning gives accurate data collection and 

analysis for structural evaluation. 

3. Applications of Computational Methods in Bridge 

Engineering 

Computational tools like FEA and CFD play an 

important role in bridge design in terms of design cost, 

safety, and performance. Below are some of the primary 

uses of these techniques: 

3.1. Applications of FEA in Bridge Engineering  

FEA is also very widely used in bridge design as it can 

simulate sophisticated geometries and behavior of 

materials under different loads. Key applications include:  

• Structural Design: FEA permits you to model 

bridge structures in detail to determine the 

response to dead, live, wind, and seismic loads. 

This facilitates discovering stress points and 

failure modes. 

• Design Optimization: FEA can be used to 

optimize bridge designs through material and 

geometry selections in order to obtain the most 

cost-effective structure meeting safety and 

performance standards at a minimal material 

usage and cost [10]. 

• Preliminary Evaluation of Existing Bridges: 

FEA plays an important role in evaluating 

existing bridges for structural integrity. 

Engineers can mimic the condition and stress 

and then suggest reinforcement or repair where 

needed [11]. 

• Construction Simulation: FEA can simulate 

the building of the bridge to enable engineers 

to predict how different ways or sequences of 

construction might affect its performance [12]. 

3.2. Applications of CFD in Bridge Engineering 

CFD is required to determine the flow behavior around 

bridges. Key applications include: 

• Wind Load Simulation: CFD is used to 

evaluate the impact of wind on bridge stability 

and performance. Simulating wind over bridge 

models will help designers discover 

aerodynamic properties and design bridges to 

deal with the heaviest wind [13]. 
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• Hydrodynamic Impact: For bridges over the 

ocean, CFD helps in modeling the 

hydrodynamic effects of waves and currents so 

that the bridge can resist these environmental 

stresses [14]. 

• Scour Analysis: The scour around the piers and 

foundations of bridges, driven by the flow of 

water, can be calculated using CFD, important 

for the bridge’s stability. 

• Thermal Impacts: CFD can also simulate the 

thermal impacts of materials on bridges based 

on environmental factors and help determine 

potential expansion and contraction problems 

that can weaken the structure. 

4.  Applications of Robotics in Bridge Engineering 

For bridge engineering, robots contribute to the increase 

of productivity, safety, and precision in many activities. 

Below are the major robotic applications in this context.  

• Bridge Deck Construction: Robots are used to 

automate the construction of bridge decks, 

with more accuracy and a shorter time to build 

[15].  

• Testing and Inspection: The bridges are now 

increasingly tested and inspected by robots, 

which provide non-destructive testing methods 

that can evaluate structural integrity without 

destroying it [16].  

• SHM: Intelligent robotic devices perform the 

continuous SHM and provide instantaneous 

data and information about the functioning and 

state of bridges [17].  

• Bridge Automation: Roadside robots enable 

bridge automated inspections with much faster 

and more accurate assessments compared to 

the manual method [18].  

• Inspection data collection: Robotic technology 

is providing better data collection solutions in 

robot bridge inspections to perform more 

effective and detailed analysis [19]. 

• Robust Robot Selection for Restoration: 

Genetic algorithms are employed to choose 

robotics best suited for restoration of bridges 

and provide optimal robotic solutions 

according to requirements [20]. 

• Non-destructive Inspection: Robot platforms 

armed with the best sensors and algorithms 

perform non-destructive inspection of bridges 

that allows thorough inspection without 

degrading the structure [21].  

• Cable Inspection Robots: Cable-stayed bridge 

inspection robots can also monitor the critical 

elements, such as cables, and lead to an 

increase in maintenance operations [22].  

• Smart Material Adoption: Robotics, along with 

smart materials, are emerging as major parts of 

construction engineering, enabling new 

designs and construction of bridges [23]. 

5. Industrial Case Studies for the Application of 

Machine Learning, Computational Techniques and 

Robotics in Bridge Engineering 

5.1. Applications of Machine Learning in Bridge 

Engineering 

Machine learning has been used in various ways to 

improve bridge engineering performance, stability, and 

safety. 

• AMC Bridge: It offers software development 

solutions like machine learning solutions in 

bridge design. They use AI to simplify 

operations and process quality, allowing them 

to get the most out of data and optimize 

engineering processes [24]. 

• Rowan CREATES: They are exploring 

machine learning methods for structural health 

assessment of bridge infrastructure in highly 

seismically active areas. This program seeks to 

enhance the resilience of bridge constructions 

through rapid decision support tools that use 

predictive analytics [25]. 

• Imetrum and University of Exeter 

Collaboration: a project that creates a new 

technology for long-term bridge condition 

monitoring via machine learning. The 

technology also has intelligent features that 

automatically interpret data, report problems, 

and predict potential issues of condition in the 

future, thus saving on maintenance expenses 

and improving safety [26]. 

5.2. Applications of Computational Techniques like FEA 

and CFD in Bridge Engineering 

The computational methods of FEA and CFD are used 

to analyze and optimize bridge designs for safety and 

efficiency. 

• DH Glabe & Associates: DH Glabe & 

Associates apply FEA to the structural analysis 

of bridges. Their engineers compute 

complicated bridge structures for load-bearing 

conditions such as wind and earthquakes using 

sophisticated software such as LUSAS [27].  
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Fig.  1. Articles reviewed (2019-2024) for applications of machine 
learning, computational techniques and robotics in bridge engineering. 

 

• Predictive Engineering: They are quite 

proficient in using FEA for bridges and other 

projects. They consider the stress, vibration, 

and fatigue effects needed to prevent or 

prolong the life of bridges [28].  

• Resolved Analytics: This company uses CFD 

modeling to model scour and erosion at 

bridges. As they model fluid dynamics, they 

can predict erosion that could compromise 

bridge foundations to enhance design and 

maintenance plans [29]. 

5.3. Applications of Robotics in Bridge Engineering 

This trend of using robots to improve productivity, 

tackle labor issues, and make bridge construction safer 

continues. 

• Advanced Construction Robotics: They’ve 

created TyBot, a robot for rebar tiedown in 

bridge construction. TyBot ties up to 1,000 

intersections per hour, which is an impressive 

savings in labor and keeps workers away from 

dangerous situations at the site [30, 31].  

 

• Autodesk and USC Collaboration: Autodesk 

collaborated with USC during the Arroyo 

Pedestrian Bridge Project in Los Angeles, 

which involved using a robotic arm to raise and 

install special steel girders for welding. Such 

cooperation among human and robot hands 

simplified the manufacturing of this complex 

design.  

 

• MX3D: A Dutch firm that’s innovating with 

3D printing of bridges. They built a 3D-printed 

steel bridge by industrial robots, which 

demonstrates new construction technologies 

and will contribute to sustainability through 

reduced material waste [32]. 

6. Literature Review on Applications of Machine 

Learning, Computational Techniques and Robotics in 

Bridge Engineering 

The number of articles covered for the applications of 

machine learning, computational techniques and robotics 

in bridge engineering in this review are shown in Figure 1 

from 2019 through 2024. 

6.1. Leveraging Machine Learning for Optimized Bridge 

Design, Adaptive Smart Infrastructure, and Predictive 

Maintenance in Dynamic Environmental Conditions 

Table 1 below shows a quantitative distribution by 

publisher of the number of articles related to machine 

learning advancements in bridge engineering. 
Table 1 
 Number of articles from different publishers reviewed for 

advancements of machine learning in bridge engineering 

Publisher 

Number of 

Articles Reviewed 

Springer 5 

Elsevier 4 

IEEE 2 

MDPI 2 

SPIE 2 

ASCE 1 

IOP Publishing 1 

Sage Journals 1 

Structurae 1 

Wiley 1 

Zenodo 1 

Total 21 
 

Mathern et al. (2019) designed a model using AI and 

machine learning to design bridges that are sustainable and 

buildable to accelerate structural decision-making and 

improve the environmental impacts through fast design 

evaluation [33]. In contrast, Pan et al. (2020) focused on 

conditional infrastructure evaluation of massive 

infrastructure such as high bridges with deep learning and 

specifically convolutional neural networks (CNNs). This 

research used satellite images to improve the feature 

extraction for safety analysis and showed that AI could be 

applied to continuous spatial and temporal infrastructure 

health monitoring [34]. Moon et al. (2020) used recurrent 

neural networks (RNNs) and active learning to extract 

damage objects from inspection reports for bridges, using 

Named Entity Recognition (NER) to automated extraction 

of entities caused by damage. Such automation enabled 

more reliable and timely maintenance programs that made 

structural integrity calculations more accurate [35].  

Xu et al. (2021) covered all the machine learning use 

cases in construction, from shallow to deep learning. They 

showed how site monitoring, automatic structural defect 
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detection, and predictive maintenance can make 

construction and infrastructure work safer, more efficient, 

and more structurally sound [36]. Nguyen (2021) was 

interested in material evaluation on bridge spans by using 

a data-driven method with a new viscosity resistance 

coefficient (IC), deep learning, and balancing composite 

motion optimization (BCMO) to investigate material 

performance and safety in bridges in Ho Chi Minh City. It 

was shown that IC values calculated from real-time 

vibration data could be used as an indicator for long-term 

structural monitoring [37]. Meanwhile, Moon et al. (2021) 

used artificial neural networks (ANN) to estimate dynamic 

displacements in bridges during heavy traffic. They used 

the correlated measured strains with displacement data to 

confirm the performance of the ANN model in predicting 

structural responses to loads in real time, enabling more 

responsive smart bridges [38]. 

The paper by Wang et al. (2022) used a gray neural 

network for designing recycled concrete bridges with 

sustainability and recycling in mind by making predictions 

of durability. In this study, we observed that the AI 

algorithm improved construction control by predicting the 

longevity of recycled concrete bridges to encourage green 

bridge design [39]. Meanwhile, Kumar et al. (2022) built a 

modified CNN for bridge condition measurement using a 

large dataset from the National Bridge Inventory. Their 

model with the Firefly algorithm to improve feature 

selection, predictability of 97.49%, which was a high 

improvement over the regular CNN model, showed that 

machine learning can be applied to adaptive infrastructure 

monitoring without physical inspection [40]. In contrast, 

Entezami et al. (2022) implemented a three-stage machine 

learning system for SHM for damage detection in 

environmental uncertainty with very limited sensor 

information. Using autoregressive spectra, log-spectral 

distance, and auto-associative neural networks (AANN), 

they controlled for environmental perturbations and 

performed accurate damage quantification on rarely seen 

structures [41].  

The article by Zhou et al. (2022) concerned creating 

maintenance policies with the best possible policy by 

modeling bridge component degradation. This method 

used Q-learning algorithms coupled with matrix updates in 

real time and was verified by simulating a simple supported 

beam bridge and a cable-stayed bridge—far superior to the 

existing methods in making dynamic decisions on larger 

bridge designs [42]. Dolui et al. (2023) used machine 

learning classifiers—one such being a decision tree—to 

compute bridge health from galfenol-based 

magnetostrictive sensors. With structural vibration 

converted to electrical signals with an accuracy of 98.72%, 

this technique showed the effectiveness of connecting 

sensor data with machine learning to give an accurate, live 

structural health report [43]. Giglioni et al. (2023) took the 

lack of labeled data for damage detection and applied 

domain adaptation within a transfer learning framework. 

This approach relied on vibration measurements and 

damage features by domain to pass health-state labels from 

one structure to the next, proven by testing it on the Z24 

and S101 bridges, and was suitable for sparse data [44].  

Xie et al. (2023): machine learning applied for severe 

wind conditions to construction of fast railway bridges over 

typhoon zones with safety and proactive action via the 

Back Propagation-Genetic Algorithm model for wind 

speed prediction. This model was practical as it related 

actual wind measurements to predefined standards and so 

supported adaptive building practices [45]. Meanwhile, 

Ghafoori et al. (2023) leveraged historical bridge condition 

information using a machine learning framework for 

bridge maintenance optimization. They modeled 

degradation through random forests and linear 

programming to forecast it, prioritize maintenance 

resources, and deliver maximum infrastructure 

performance under budget constraints [46]. In contrast, Tai 

et al. (2023) focused on the economic cost minimization of 

stochastic optimization algorithms for cable-stayed bridge 

designs. They proposed two stochastic conjugate gradient 

algorithms—Modified Armijo and Modified Weak Wolfe-

Powell line search algorithms—which improved global 

convergence and robustness in minimizing construction 

cost under uncertainty [47].  

Zhang et al. (2024) addressed wind-bridge dynamics 

and applied machine learning for wind field simulation and 

aerodynamic control to refine insights on wind-induced 

bridge vibrations and make design responses to changing 

winds more responsive. Similarly, Nguyen et al. (2024) 

using ANN and adaptive neuro-fuzzy inference systems 

(ANFIS) for SHM of Dbica railway bridge produced 

predictive precision (up to 85%) in diagnosis of dynamic 

bridge behavior, thus improving maintenance practices and 

lowering failure probability [48]. Bai et al. (2024), by 

contrast, focused on the conceptual design of bridges, 

automating beam type choice with graph neural networks 

(GNNs) via AutoDis Graph Ontology Attention Matching 

(AGOAM). This change dramatically accelerated and 

optimized design choices by mapping attribute interactions 

to structural demands, a revolution in automated, scalable 

conceptual design [49].  

Yang, Wang, and Nassif (2024) studied the 

environmental causes of bridge decay by applying 

XGBoost to condition predictions of RC bridge decks and 

identified age, freeze-thaw cycles, and rain as major factors 

contributing to decay. Their result confirmed that feature 

weighting supports efficient resource allocation for 

predictive maintenance [50]. In contrast, Gunderia et al. 

(2024) were focused on sustainable predictive maintenance 

with different AI-based models such as ANN and CNN. 

They suggested a combined ANN, CNN and life cycle 
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assessment-based integrated model for maintenance best 

practices based on sustainability in prediction [51]. 

Giglioni et al. (2024) adapted transfer learning as a domain 

adapter to enhance damage classification and generalized 

machine learning algorithms from well-labeled data to 

unlabeled data over bridge networks. This was proven to 

work on prototype bridges, improving damage 

classification and compute speed of SHM with inadequate 

labeled data [52]. 

6.2. Leveraging Computational Techniques like FEA and 

CFD in Bridge Engineering: Predicting Failure Modes 

and Enhancing Structural Integrity for Long-Lasting 

Resilience 

Table 2 presents the number of articles reviewed for 

computational techniques’ advancements in bridge 

engineering, by publisher. 
Table 2  
Number of articles from different publishers reviewed for 

advancements of computational techniques in bridge engineering 

Publisher 

Number of 

Articles Reviewed 

IOP Publishing 4 

MDPI 3 

ASCE 2 

Elsevier 2 

Springer 2 

Copernicus Meetings 1 

IJIREM 1 

Sage Journals 1 

Sciendo 1 

Structurae 1 

Taylor & Francis 1 

TU Delft Open Publishing 1 

University of Toledo 1 

Total 21 
 

In the study by El-Ghandour and Foster (2019), FEA 

and Multibody Systems Dynamics (MSD) were combined 

to explain the bridge approach problem in railroad systems, 

that is, the detrimental effects of abrupt stiffness changes 

at bridge entrances. They found that installing an inclined 

concrete slab greatly reduced stress and vertical 

deformations, making railroads safer and more durable 

[53]. In contrast, Izvekov et al. (2020) focused on a 

metallurgical crane’s girder using FEA to detect the zones 

of failure at static loads. Their probabilistic model 

elucidated important risks for the integrity of the girder, 

which was a precursor to appropriate reinforcement, 

pointing towards the necessity of continuous maintenance 

to extend service life [54]. Sharma and Guner (2020) were 

pioneers of this field when they proposed a nonlinear FEA 

approach for the strength analysis of deep bridge bent caps 

that are typically placed under loads beyond their design 

limits. Their findings showed more accurate prediction of 

cracking and modes of failure than the older approaches, 

which gave bridge engineers a strong basis for measuring 

deep concrete components [55].  

Liu et al. (2021) devised a coupled CFD-FEM 

simulation technique for bridge fire performance and 

showed how previous tests had often missed the dynamic 

interactions between heat and structure. Their study 

showed that the coupled method accurately predicted 

vulnerability under fire conditions—and hence safety 

studies and design guidelines for bridges that are 

vulnerable to fire [56]. Sengsri and Kaewunruen (2021) 

tested the local failure modes and critical buckling loads of 

a meta-functional auxetic sandwich core for composite 

bridge bearings. They used three-dimensional finite 

element models, which they verified using experimental 

results, and they showed that the novel auxetic design led 

to a major increase in crashworthiness and structural 

strength through local buckling failures that could occur 

before yielding when compressed [57]. Ko (2021) looked 

at the seismic behavior of RC single-column bridge bents 

under near-fault ground movement. By using nonlinear 

fiber finite element models without bond-slip effect, Ko’s 

study accurately predicted the modes of failure; modeling 

without it could overestimate the strength of structures 

[58].  

Zhu and Wu Tian (2022) applied CFD to the main girder 

of cable-stayed bridges to study vortex-induced vibrations 

(VIV). Their numerical models, derived using a 

bidirectional fluid-structure coupling process, had shown 

the importance of wind loads on bridge safety in 

construction and operation by modeling the vortex 

vibration behavior of the main girder [59]. Parallax-style, 

Yoneda et al. (2022) focused on a 3D finite-element 

modeling generation system with data processing platform 

(DPP) for fatigue evaluation of reinforced concrete 

bridges. Their results showed the DPP can be used to 

improve the structural model’s predictive power under 

various stress conditions, resulting in a more accurate and 

effective modeling of real bridge structures compared with 

conventional modeling [60]. Meanwhile, Tang et al. (2022) 

carried out a reliability-based vulnerability study of bridge 

piers damaged by debris flow using FEA to simulate fluid-

solid effects. Their study—through a finite element model 

and impact forces using a two-phase flow theory, distilled 

into an easy-to-understand 2D model—determined critical 

velocity and failure modes of bridge piers in debris flows 

and helped provide safer infrastructures [61].  

Quan et al. (2022) conducted a comprehensive study of 

the seismic mitigation of a long-travel high-speed railway 

continuous beam bridge by using FEA to model the 

behavior of the bridge under earthquake loads with viscous 

dampers as an essential design element. They discovered 

that the dampers acted as good absorbers, with damping 
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rates up to 81% on some seismic waves, which enhanced 

structural stability and dynamic response [62]. Duan and 

Tao (2023), meanwhile, considered flood resilience using 

both CFD and Fluid-Structure Interaction (FSI) modeling 

to analyze flood damage to bridge piers and came up with 

the best design for piers in flood areas. Their parametric 

analysis found that wave height and speed were critical 

parameters that determined structural integrity, which is 

important for the infrastructure resilience to floods [63]. 

Similarly, Fleit et al. (2023) studied flows and local scour 

in a multiphase hydro- and morpho-dynamic numerical 

model (REEF3D) of submerged bridge decks. They made 

it clear that the transport of sediment was a significant 

factor and backed up their model with experimental 

evidence, highlighting the challenge of modeling scouring 

[64].  

Kaushal et al. (2023) dynamically simulated bridge 

geometry with ANSYS FEA and observed natural 

frequencies and mode forms that highlighted zones at high 

deformation and potential resonance. Their result called for 

the development of damping and vibration damping 

controls for long-term stability [65]. In contrast, 

Malekghaini et al. (2023) used Bayesian model updating to 

bridge FEA and data from the real world to identify 

damage in bridges using a robust model validated on 

synthetic data and adapted to the real structure. Their 

findings showed that the framework was useful in 

determining damage, and so SHM systems became 

dramatically better [66]. Meanwhile, Dong et al. (2023) 

focused on the seismic failures of river-spanning girder 

bridges in the presence of soil liquefaction. Their two-

dimensional finite element model revealed that soil 

liquefaction influenced the response to an earthquake with 

increased displacements and deformation of important 

elements, which increased the risk of bridge collapse 

during a seismic event [67].  

Zhu et al. (2024) did a detailed CFD simulation to 

quantify aerodynamic forces on tall cars crossing the 

Queensferry Crossing Bridge in different wind loads. The 

truck’s ability to withstand aerodynamic instability, they 

discovered, was particularly at risk, and hence vehicle 

dynamics must be taken into account in bridge design to 

maximize safety [68]. In contrast, Petruccelli et al. (2024) 

dealt with the hydrodynamic loads acting on bridges in 

flood events and used CFD to calculate stress conditions 

and carrying capacity. Their simulations offered important 

details on drag and lift coefficients for several different 

submergence scenarios that were used to devise strategies 

for strengthening bridges against floods [69]. Han and 

Wang (2024) used FEA to explore failure modes of rock 

slopes around bridge anchorage foundation pits. They 

combined limit equilibrium and finite difference 

techniques to discover major causes of slope failure, such 

as rain and earthquakes, providing an overview of slope 

mechanics in vulnerability geological systems [70]. 

Fusco et al. (2024) were focused on an efficient beam 

finite element model of the nonlinear structure of existing 

prestressed RC bridges. They applied a damage-plasticity 

model on OpenSees, and they showed how their model 

saves computing time without sacrificing accuracy during 

inspections [71]. Jia et al. (2024) examined seismic faulting 

for a simple-supported beam bridge by modeling it using a 

three-dimensional FEA model in LS-DYNA under real-

world conditions. The key variables they found, for 

example, fault-crossing angle and ground surface 

permanent rupture displacement, indicated that the position 

of the bridge in relation to seismic faults had a significant 

effect on stability [72]. Zhu et al. (2024) investigated the 

dynamic response of a cable-stayed pipe bridge in seismic 

loading using a large-scale FEA simulation in ANSYS 

Workbench, including fluid-structure dynamics. They 

showed that the FSI approach is more successful at 

modeling the dynamic behavior of the bridge [73]. 

6.3. Enhancing Bridge Safety: The Role of Robotics in 

Inspection Engineering 

 Table 3 presents the number of articles reviewed for 

robotics’ advancements in bridge engineering, by different 

publishers. 
Table 3  
Number of articles from different publishers reviewed for 

advancements of robotics in bridge engineering 

Publisher 

Number of Articles 

Reviewed 

IEEE 9 

ASCE 2 

Emerald 2 

MDPI 2 

arXiv (Cornell University) 1 

ASNT 1 

Intelligence Science and 

Technology Press Inc. 1 

SPIE 1 

Springer 1 

Wiley 1 

Total 21 
 

 Charron et al. (2019) addressed accessibility and data 

collection by using mobile ground and air robots. These 

results showed more direct access to difficult-to-access 

locations and more consistent data, and consequently, 

bridge inspections became more efficient than before. 

Potenza et al. (2020) developed a novel technique using 

unmanned aerial vehicles (UAVs) with new image 

processing methods. This method was able to quantify 

defects and shows that automated inspection and defect 

classification are much improved. The results showed the 
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method was robust, in particular when it came to finding 

repeatable flaws in the infrastructure of the Italian railway 

network [74]. Wang et al. (2020) scanned steel box girders 

using a deep learning computer vision tool. It had a 

predictive accuracy rate of more than 90% in detecting 

structural decay, which indicates the potential of deep 

learning in bridge inspections [75]. 

Yan et al. (2021) talked about UAV automated bridge 

detection, a new path planning algorithm for UAV flight 

paths optimized to move through more challenging 

environments, such as pier jams. Their simulations showed 

successful full-coverage detection of bridges, proving the 

UAVs performance in infrastructure monitoring [76]. 

Gallegos Garrido and Sattar (2021), on the other hand, built 

SIRCAUR, a self-assisted wall-climbing robot that 

inspects RC buildings. They focused on improving 

adhesion forces through simulation and experimental 

testing so that the robot carried ground-penetrating radar 

(GPR) for corrosion and concrete degradation detection. 

These tests proved that the robot was capable of 

performing accurate and safe inspections, and therefore 

SHM became better [77]. Meanwhile, Lin et al. (2021) 

studied using flying robots to do full bridge inspections, 

automating the entire process of visual information 

capture, 3D mapping, destructibility detection, analysis, 

and reporting. They discovered that drones have 

dramatically increased the inspection speed and quality of 

data by picking up defects with high sensitivity and 

avoiding human error [78].  

Ahmed et al. (2022) presented a bicycling robot 

designed for maintenance on steel-reinforced bridges. The 

sophisticated steel defect detection system was built using 

deep learning techniques such as LinkNet and UNet. Their 

study primarily focused on the robot’s strength in operating 

through high-pressure steel buildings and showed 

promising results in defect detection by fully testing its 

visual sensor system [79]. In contrast, Zheng et al. (2022) 

launched the CCRobot-IV, a climbing robot that climbs 

over obstructions during cable inspections, which 

improved operational safety substantially. It was built with 

a quad-ducted propeller system so that the robot didn’t 

need friction to run, carrying heavier loads while traversing 

rough terrain. It passed its navigation and inspection tests 

with success through experimental and field tests, which 

also prove to be useful [80]. Similarly, Motley et al. (2022) 

worked on a high-powered multi-steering climbing robot 

with a novel adhesion mechanism and different steering 

modes for greater control and stability while inspecting 

steel bridges. The design of the robot was subsequently 

proven, and they further showed how they could make 

substantial improvements in inspection methods in the 

industry [81].  

Li et al. (2022) built a circularly rotating cable 

inspection robot with elastic suspension that was able to 

scale taller obstacles and ascend stable on vertical cables. 

They showed their experiments were able to carry a 12.4 

kg payload and maneuver through obstacles without any 

harm to the robot, demonstrating its practical usage for 

real-world inspection [82]. In contrast, Gong et al. (2023) 

explored Building Information Modeling (BIM) and 

robotic mapping to reduce risk in bridge construction. 

Their study pointed out how critical it was to keep the 

industry safe and even used AI-powered nanobots to 

improve detection of hazards. Results suggested that the 

integrated model resulted in stricter on-site safety 

management solutions [83]. Meanwhile, Hoxha et al. 

(2023) were focused on a robotic system for mapping 

subsurface defects using impact-echo and GPR. They were 

impressed by the speed of the dual-sensor method, which 

collected data faster than expected and offered complete 

evaluations of concrete buildings [84].  

Gucunski et al. (2023) focused on condition evaluation 

of RC bridges through nondestructive evaluation (NDE). 

They found that robots can speed data collection and safety 

for inspection employees, providing better measurements 

of bridge status and less costly traffic delays during 

inspections [85]. Alamdari and Ebrahimkhanlou (2023), on 

the other hand, combined cameras and LiDAR cameras to 

develop a novel method of crack detection that combined 

high-resolution photographs and 3D point clouds. Their 

results showed a better detection rate and faster data 

acquisition, and in the end, a more detailed picture of 

structural integrity than other approaches [86]. Popli et al. 

(2023) created Robotics-Assisted Onsite Data Collection 

(ROAD), a system that used deep learning to detect real-

time cracks. In their research, they demonstrated that 

Xception was a better algorithm than others, with more 

than 90% accuracy and validation of the system in a variety 

of field conditions [87].  

In the paper of Ade-Omowaye et al. (2024), they 

explored the impact of robotics and automation on 

engineering and made a literature review on the economic, 

social, and ethical implications of these technologies for 

the digital economy. Their results revealed the possibilities 

of robotics to enhance the efficiency and safety of 

engineering based on classic inspection issues [88]. In 

contrast, Lyu et al. (2024) built a wall-climbing, heavy-

duty robot to inspect the concrete masonry of huge bridges. 

They figured out a way to get a similar adsorption force 

equation to maximize the capacity to carry load and then 

ran some tests to confirm that the robot was working as it 

should. The findings showed that this new design made 

inspection much safer because it accesses hard-to-reach 

areas without introducing the risks associated with manual 

inspection [89]. Pham et al. (2024) designed a compact 

analog magnetic sensing system for structural inspection of 

steel bridges. Their test was to engineer synthetic cracks in 

a steel test plate and then find that, coupled to robotic 
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platforms, the sensor system allowed for the real-time 

detection of multiple kinds of cracks. This progress further 

improved the safety and maintenance of steel buildings 

[90].  

Choi et al. (2024) tried to optimize visual inspection 

with a mixed reality system that used gaze tracking. It was 

shown that inspectors could directly view holographic data 

in real time, which improved the decision-making on 

complex inspections with higher quality outcomes than 

traditional techniques [91]. Pokhrel et al. (2024) sought to 

automate concrete bridge deck inspections with UAS and 

machine learning. This paper demonstrated CNNs and 

Vision Transformers (ViTs) successfully to find damage 

with 97% accuracy of the ViT model as compared to CNN. 

This development made it clear that the combination of 

UAS and machine learning could yield more accurate and 

efficient inspections [92]. Finally, Bian et al. (2024) 

analyzed all the robots currently used for cable inspections 

and suggested a new non-destructive sensor. This 

inspection machine that measured cable corrosion 

efficiently used two data input modules to provide better 

inspection precision and speed. The study showed that the 

proposed device exceeded the limitations of the existing 

techniques and provided a quicker and more accurate 

measurement of the bridge cable state [93]. 

7. Challenges and Future Scope in Bridge Engineering 

In this article, some problems and opportunities related 

to applying machine learning, computing, and robotics in 

bridge engineering are discussed. Here are the main ones: 

7.1. Challenges  

• Data Availability: One of the biggest bottlenecks 

is that there is not enough labeled data to train 

machine learning models on. This dearth can 

interfere with the detection of damage and 

maintenance predictive approaches, as in the 

application of domain adaptation to counteract 

this. 

• Explicitness of Implementation: Integrating new 

technology like robotics and machine learning in 

the existing engineering process is tricky. 

Engineers may struggle to translate old 

methodologies to implement these new tools, and 

the adoption rate might be slower.  

• Cost and Ethical Issues: When it comes to 

economic issues associated with the use of 

robotics and automation in bridge inspection, 

questions surrounding the cost, and the 

elimination of human jobs arise. Questions about 

ethics in the deployment of autonomous systems 

in critical infrastructure also have to be settled.  

• Environmental Issues: Dynamic environment 

variables influence bridge dynamics and are an 

obstacle to predictive maintenance models. 

Weather conditions and other natural disasters 

make it hard to calculate bridge status and how 

efficiently repairs were done. 

7.2. Future Scope 

• More Effective Machine Learning Models: We 

can next look for stronger machine learning 

models that can generalize to various bridge 

types and conditions. That may involve 

optimizing transfer learning to apply 

observations of well-observed bridges to 

assessments of under-observed buildings.  

• Embedding of IoT and Real-Time Monitoring: 

Bridge engineering in the near future may 

more often include IoT technologies for real-

time monitoring. It would provide the data 

collection and analysis continuously, more 

early maintenance plans, and better safety 

precautions.  

• Robotics Development: As robotics develops 

further, we can expect to see even more 

advanced inspection systems that can do 

difficult tasks autonomously. That might mean 

creating drones and ground robots that can 

work in harsh conditions and make accurate 

diagnoses of bridge conditions.  

• Environmental Concerns: The green 

credentials are being paid more attention to in 

bridge design. It can also be investigated in 

future research to apply machine learning and 

computations to the optimal maintenance 

regimes that extend the life of bridges and are 

sustainable 

8. Conclusion 

The review paper titled Machine learning, computation, 

and robotics for bridge engineering provides a detailed 

description of how these technologies can significantly 

advance the discipline. The use of machine learning and 

computational tools, such as FEA and CFD, has been vital 

to determining the structural behavior and modes of failure 

of bridges. These techniques allow for more accurate 

assessments of structural integrity and resilience in diverse 

environments. This is highlighted as an industry-leading 

innovation that increases safety and effectiveness when 

performing bridge inspections by robots. Robots will get 
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into difficult places, eliminating the risks associated with 

manual inspections and facilitating accurate assessments of 

bridge conditions. These results point to the necessity of 

constructing bridge structures with greater durability in 

dynamic conditions such as earthquakes and flooding. 

With the use of advanced modeling, engineers can 

visualize bridge vulnerabilities and develop effective 

reinforcements. This paper emphasizes the need to 

continue exploring and developing them to adapt to 

changing engineering issues. Together, the use of these 

technologies enhances current practices and also prepares 

the ground for future innovations in bridge design. Finally, 

the review recommends a multidisciplinary approach that 

leverages machine learning, computation, and robotics to 

design safer, more efficient, and more durable bridges. 

This bundled approach is vital for resolving the nuances of 

the needs of contemporary infrastructure in the long term. 

Overall, the paper clearly demonstrates how these novel 

technologies can transform bridge engineering and deliver 

safer and more resilient infrastructure. 
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