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Floods are natural disasters that can result in significant social, economic, and environmental 

impacts. Timely and accurate flood detection is crucial for effective disaster management 

and mitigation. This paper addresses the importance of water segmentation in flood detection 

and water engineering applications, emphasizing the need for precise delineation of water 

areas in flood-hit regions. Accurate water segmentation not only aids in assessing the extent 

of flooding but also plays a vital role in predicting and preventing potential flood events. 

This study explores the application of advanced deep learning models, namely SegNet, 

UNet, and FCN32 for automated flood area segmentation. Leveraging a dataset comprising 

290 images depicting flood-affected areas, the models are trained to accurately delineate 

water regions within the images. The experiment results demonstrate the efficacy of these 

models in effectively segmenting floodwaters. Among the tested models, SegNet emerges 

as the top performer, achieving an impressive precision rate of 88%. This superior 

performance underscores the potential of deep learning techniques in enhancing flood 

detection and response capabilities, paving the way for more efficient and reliable flood 

prediction systems. 
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1. Introduction 

Floods, which occur when water overflows onto 

normally dry land, have various causes such as excessive 

rainwater in saturated ground, overflowing water bodies, 

rapid snow or ice melting, storm surges, and tsunamis. 

Climate change exacerbates these events, leading to more 

intense precipitation and temperature variations. Poor 

water management practices, including dam discharges 

and neglected bank maintenance, can also contribute to 

flooding. Most floods result from extreme rainfall, 
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allowing for some predictability. However, flash floods, 

developing rapidly within hours, are highly unpredictable 

and dangerous. Climate change's influence on extreme 

weather events, such as hurricanes and sea-level rise, poses 

an increasing threat. Floods cause significant damage 

globally, exceeding $40 billion annually, with thousands of 

fatalities. Novel approaches using Artificial Intelligence 

algorithms for automated image and video analysis from 

various sources, including surveillance cameras, drones, 

and social media, are crucial for effective flood monitoring 

and early warnings [1-4]. 
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Floods, devastating natural disasters affecting societies 

globally, have intensified due to climate change, 

urbanization, and deforestation. Detecting floods early is 

crucial for minimizing their impact, prompting a shift from 

traditional methods to advanced technologies like deep 

learning models. Accurate delineation of water bodies 

through water segmentation, classifying pixels in images, 

is essential for precise flood detection. Leveraging deep 

learning models, particularly for water segmentation, aims 

to surpass the limitations of traditional techniques in terms 

of accuracy, speed, and scalability. The growing severity 

of floods underscores the need for innovative tools to 

reduce their impact, emphasizing the importance of 

automated image and video analysis using Artificial 

Intelligence algorithms for comprehensive flood 

monitoring and early detection [4-7]. 

Existing flood detection methods, relying on remote 

sensing technologies and machine learning algorithms, 

have shown promise but are hindered by challenges such 

as false positives, limited scalability, and the inability to 

capture subtle changes in water dynamics. The introduction 

of advanced deep learning models offers a potential 

breakthrough, leveraging the power of neural networks to 

discern intricate patterns and variations in satellite 

imagery. Recently, a discernible pattern has arisen, marked 

by the increasing adoption of deep learning for image 

analysis. These applications extend across diverse 

domains, encompassing image analysis such as 

recognition, classification, and segmentation. Deep neural 

networks, functioning as comprehensive end-to-end 

learning models, showcase their ability to autonomously 

extract intricate features from any high dimensional 

images. Particularly noteworthy is the application of deep 

learning algorithms in water detection and segmentation. 

The adoption of advanced deep learning models is 

motivated by their capacity to learn hierarchical features 

and representations from complex data. Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and their variants have demonstrated success in 

image classification and segmentation tasks, making them 

well-suited for the nuanced demands of flood detection 

through precise water segmentation.  

The main goal of this study is to propel the capabilities 

of flood detection by employing cutting-edge deep learning 

models in conjunction with precise water segmentation. 

Through this approach, we seek to surmount the constraints 

inherent in existing methods, offering a more precise and 

timely methodology for the identification and monitoring 

of flood events. Within this manuscript, we embark on an 

extensive exploration of water segmentation, leveraging 

the formidable capabilities of contemporary deep learning 

models. Our toolkit encompasses well-established models 

such as SegNet [8], UNet [9], and FCN32 [10], each 

distinguished by intricate architectures and a profound 

understanding of visual patterns. These models contribute 

a wealth of expertise to the domain of water segmentation. 

We applied this methodology to a publicly available water 

segmentation dataset, conducting a comprehensive 

comparative analysis of state-of-the-art deep learning 

models across 290 images.  

Section 2 provides an overview of related studies and 

previous implementations of deep-learning models in the 

realm of water segmentation. Moving on to Section 3, we 

detail our methodology, including information about the 

dataset and an introduction to three deep-learning models. 

Finally, in Section 4, we present the experimental results 

and conduct a statistical analysis of the performance of 

these deep learning models. 

2. Related works 

In recent times, there has been a surge in the application 

of machine learning and deep learning models for tasks 

within computer vision, notably in object detection and 

segmentation [11-12]. The prominence of these models in 

the field of image processing, specifically for flood label 

detection, has grown considerably. The literature, however, 

remains relatively sparse on this particular subject. 

Yang et al. [13] took on the task of water level 

monitoring by employing a visual recognition method. A 

river camera was utilized to measure flood depth resulting 

from rising water levels. The incorporation of techniques 

such as the Laplacian method [14] and probabilistic Hough 

transform [15] allowed for the detection of edges in various 

objects and the computation of the waterline's straightness. 

In a separate study, [16] conducted remote calculations of 

flood levels by measuring the length of a ruler in footage, 

employing Convolutional Neural Networks (CNNs). Their 

findings demonstrated the superior performance of CNNs 

over traditional image processing algorithms, showcasing 

a standard deviation of 6.69 mm. 

In the work [17], CNNs were applied to sift through 

flooding photos on social media platforms, facilitating 

label detection. More recently, [18] undertook the 

estimation of flood depth by identifying submerged 

vehicles in flooded photos, utilizing the Mask R–CNN 

framework [19]. The calculated flood depth was then 

compared with 3D rendered objects using feature maps 

extracted by Visual Geometry Group Nets [20]. This 

proposed methodology demonstrated impressive accuracy, 

with absolute error values reaching as low as 6.49 cm in 

flood depth calculation. In [21], the authors delved into the 

study of flood depth using image processing and deep 

learning, employing traffic stop signs as ubiquitous 

measurement benchmarks in flood photos. Their approach 

estimated flood depth in crowdsourced photos with a mean 

absolute error of 12 inches. Collectively, these studies 



Journal of Civil Engineering Researchers 

2024-vol6(1)-p 1-8 

 

3 

contribute to the evolving landscape of flood label 

detection, showcasing the versatility of approaches ranging 

from visual recognition and traditional image processing to 

the application of advanced deep learning models. In [4], 

the WSOC dataset was introduced. This dataset, an 

augmentation of existing publicly available datasets, 

includes diverse water-related labels (e.g., river, sea, 

waves). 

Various state-of-the-art Deep Learning models for 

semantic segmentation were explored in this study, 

combining different backbones commonly used for image 

labeling with semantic segmentation models. Additionally, 

a new Python package named "FloodImageClassifier" was 

developed [22]. This package is designed for the 

classification and detection of objects within collected 

flood images. "FloodImageClassifier" incorporates various 

CNN architectures, including YOLOv3, Fast R–CNN 

(Region-based CNN), Mask R–CNN, SSD MobileNet 

(Single Shot MultiBox Detector), and EfficientDet, 

enabling simultaneous object detection and segmentation. 

The package also includes concepts such as Canny Edge 

Detection and aspect ratio for floodwater level estimation. 

 

 

 

Fig. 1.  Some examples with mask image [24] 

3. Methods 

3.1. Dataset 

The flood area segmentation dataset provides a 

comprehensive collection of 290 images capturing regions 

affected by flooding, each paired with self-annotated mask 

images that precisely outline the areas submerged in water 

[23]. These masks were meticulously generated using 

Label Studio, a versatile and open-source data labeling 

software known for its accuracy and efficiency in 

annotation tasks. 

The primary objective of this dataset is to facilitate the 

development and training of robust segmentation models. 
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These models aim to precisely delineate the water-affected 

regions within photographs depicting areas impacted by 

floods. The annotations within the dataset serve as a 

valuable resource for enhancing the accuracy and efficacy 

of segmentation algorithms, enabling the creation of 

model’s adept at recognizing and isolating flood-induced 

water regions in a given image. 

3.2. Deep learning models 

In our quest for achieving the accurate and efficient 

segmentation of floodwater, we harnessed the remarkable 

capabilities of three distinguished deep learning models. 

Each of these models boasts unique strengths and intricate 

architectural features, making them pivotal contributors to 

the landscape of image analysis and segmentation. The trio 

of SegNet, UNet, and FCN32 stand out as foundational 

pillars in this domain, having demonstrated their prowess 

in handling complex segmentation tasks with precision and 

effectiveness. These models serve as integral components 

in our research, offering a diverse set of tools to explore 

and optimize the segmentation of floodwater, contributing 

to advancements in the broader field of computer vision 

and image analysis. 

SegNet, a pioneering deep learning architecture 

designed for semantic image segmentation, boasts a 

sophisticated structure that has significantly influenced the 

landscape of computer vision tasks.  

Developed by the Visual Geometry Group at the 

University of Oxford, SegNet's architecture is meticulously 

crafted to balance computational efficiency with high-

performance segmentation capabilities. At its core, SegNet 

follows an encoder-decoder framework, where the encoder 

progressively reduces spatial dimensions while capturing 

essential features from input images. This is achieved 

through a series of convolutional and pooling layers, with 

the pooling indices being stored during the encoding 

process. The critical innovation of SegNet lies in its 

decoder, which employs upsampling techniques based on 

the stored pooling indices. This enables precise 

reconstruction of segmented output, recovering intricate 

details crucial for accurate segmentation. The encoder-

decoder structure is further enriched by incorporating skip 

connections, allowing the network to capture both local 

and global context information. SegNet's architecture is 

characterized by its lightweight design, making it 

computationally efficient and suitable for real-time 

applications.  Delving into the details, the encoder module 

typically consists of convolutional layers with batch 

normalization and rectified linear unit (ReLU) activation 

functions, facilitating feature extraction. Pooling layers, 

specifically max-pooling, are strategically placed to reduce 

spatial dimensions while retaining essential information. 

The decoder module employs upsampling layers, guided 

by the stored indices, to reconstruct the segmented output. 

Skip connections, established between corresponding 

layers in the encoder and decoder, enhance the network's 

ability to capture hierarchical features.  SegNet's 

adaptability and effectiveness extend beyond its 

architecture, making it particularly well-suited for a diverse 

range of applications.  

Its implementation in tasks such as autonomous 

vehicles, medical image analysis, and, in our specific 

context, floodwater segmentation, underscores its 

versatility and the impact of its nuanced design on the 

advancement of semantic segmentation techniques. UNet, 

a groundbreaking convolutional neural network (CNN) 

architecture, has emerged as a cornerstone in the realm of 

biomedical image segmentation, showcasing exceptional 

performance in various computer vision tasks. Introduced 

by Ronneberger et al. in 2015, UNet was specifically 

designed to address challenges related to object 

localization and semantic segmentation. The architecture 

of UNet follows a U-shaped design, featuring a contracting 

path, a bottleneck, and an expansive path. The contracting 

path, consisting of multiple convolutional and max-pooling 

layers, captures hierarchical features while gradually 

reducing spatial dimensions. The bottleneck, at the center 

of the U, serves as a bridge between the contracting and 

expansive paths, preserving critical contextual 

information. The expansive path, characterized by up-

convolutional layers, facilitates precise localization and 

segmentation by gradually restoring spatial dimensions. 

Notably, skip connections are incorporated, linking 

corresponding layers in the contracting and expansive 

paths. This innovation allows UNet to recover fine-grained 

details, enhancing its capacity to delineate complex 

structures in images. UNet's architecture is celebrated for 

its ability to handle limited annotated data efficiently, 

making it a favored choice in medical imaging 

applications, where labeled datasets are often scarce. The 

adaptability and effectiveness of UNet in diverse 

segmentation tasks underscore its impact on advancing the 

field of computer vision. 

FCN32, or Fully Convolutional Network with a stride 

of 32 pixels, represents a pivotal advancement in semantic 

segmentation by eliminating the need for fully connected 

layers, enabling efficient end-to-end pixel-wise 

predictions. Introduced by Shelhamer et al., FCN32 is 

renowned for its ability to process input images of arbitrary 

sizes and produce dense pixel-level predictions. The 

architecture is characterized by a sequence of 

convolutional layers with large receptive fields, efficiently 

capturing global context information. Importantly, FCN32 

incorporates skip connections, linking convolutional layers 

with corresponding layers in the decoding path to enhance 

the localization precision of the model. The decoding 

process involves up-sampling layers, allowing the network
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Fig. 2. Top: The Architecture of SegNet. Down: UNet 

 to produce pixel-wise predictions while preserving 

spatial information. This approach enables FCN32 to 

effectively handle varying input sizes and maintain 

detailed segmentation results. The absence of fully 

connected layers contributes to computational efficiency 

and faster inference times, making FCN32 a preferred 

choice in applications where real-time processing is 

crucial, such as in our pursuit of floodwater segmentation. 

The adaptability and accuracy of FCN32 underscore its 

significance in advancing the field of semantic 

segmentation and image understanding. 

4. Experiments 

4.1. Parameter setting 

The development of the deep learning model, as detailed 

in this investigation, was conducted using Keras. All 

experiments were carried out on a 8-core PC with an i7-

6700 processor running at 3.4GHz, 128GB of RAM, and 

an NVIDIA GeForce RTX 3090. Our approach involved 

setting the margin at 0.2, implementing random sampling, 

and executing 1000 training epochs. We employed a 

publicly accessible dataset consisting of jpeg images for 

water segmentation. Our preprocessing steps included 

normalization and standardization of the dimensions for all 

images. In the course of this study, we allocated 75% of 

these images for training and validation, reserving the 

remaining 25% for the testing dataset.   

4.2. Metrics 

Performance metrics play a crucial role in evaluating the 

effectiveness of segmentation models. Precision, 

Sensitivity, also known as True Positive Rate or Recall, 

and the Dice Coefficient are three crucial metrics in the 

evaluation of segmentation models. The precision metric 

provides insights into the model's ability to make accurate 

positive predictions, minimizing the occurrence of false 

positives. Sensitivity is formulated as the ratio of true 

positive predictions to the total number of actual positive 

instances. It gauges the ability of a segmentation model to 

accurately capture all relevant regions within the ground 

truth, emphasizing the minimization of false negatives. On 

the other hand, the Dice Coefficient measures the similarity 

between the predicted and true segmentations by 

evaluating the overlap between the two. A higher Dice 

Coefficient indicates better agreement between the 

predicted and actual segmentations, emphasizing a 

balanced consideration of false positives and false 

negatives. Sensitivity and Dice Coefficient, together, offer 

a comprehensive understanding of a segmentation model's 

performance by highlighting its ability to capture relevant 

regions while maintaining a precise delineation of the 

segmented areas. These metrics are particularly valuable in 
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medical imaging and other fields where the accurate 

identification of specific regions is crucial.  

 

𝐷𝑖𝑐𝑒 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

4.3. Results 

Tables 1 and 2 provide a comprehensive examination of 

our analysis, systematically evaluating the performance of 

different models in water segmentation across a diverse 

range of metrics. In Table 1, we showcase the results 

obtained by employing deep learning models with VGG19 

[20] as the backbone on the flood area segmentation 

dataset. On the other hand, Table 2 delves into a detailed 

exploration of the efficacy of our models utilizing 

ResNet50 [24]. The VGG-19 is characterized by a 

configuration comprising 19 layers, including 16 

convolutional layers and three fully connected layers. 

These layers employ 3x3 filters with a stride and padding 

size of 1 pixel. The choice of compact kernel sizes serves 

to limit the number of parameters while ensuring 

comprehensive image coverage. In the VGG-19 model, a 

2x2 max pooling operation with a stride of 2 is performed. 

This model achieved second place in classification and first 

place in positioning at the 2014 ILSVRC competition, 

boasting a total of 138 million parameters. ResNet50, 

belonging to the ResNet (Residual Network) family, stands 

out as a potent deep-learning model known for its 

architectural depth and structural innovation. Consisting of 

a total of 50 layers, the model's architecture introduces 

groundbreaking residual blocks that redefine the landscape 

of deep neural networks. These blocks incorporate skip 

connections, allowing the model to train with exceptional 

depth while mitigating the vanishing gradient problem. 

This profound structural innovation empowers ResNet50 

to adeptly capture intricate image features, even in the 

presence of complex and noisy data. Essentially, the 

architecture's depth accommodates increasingly complex 

visual data, facilitating the extraction of fine-grained image 

details. 

With 60.8 million parameters, this network excels at 

recognizing nuanced image variations, making it 

invaluable for tasks such as medical image detection and 

classification. The model's distinctive structural resilience 

and depth position it as a top choice for addressing intricate 

challenges in image analysis and classification. 

Table 1 presents a segmentation comparison of various 

models with VGG19 as the backbone. The performance 

metrics, including Dice coefficient, sensitivity, and 

precision, showcase the effectiveness of each model in 

accurately delineating water regions in the flood area 

segmentation dataset. FCN32 demonstrates a Dice 

coefficient of 0.671±0.0027, sensitivity of 0.652±0.0038, 

and precision of 0.74±0.028. U-Net exhibits a higher Dice 

coefficient of 0.75±0.0027, sensitivity of 0.71±0.0019, and 

precision of 0.821±0.0010. SegNet outperforms both with 

a Dice coefficient of 0.810±0.0026, sensitivity of 

0.77±0.0070, and precision of 0.85±0.054. These results 

provide a detailed insight into the segmentation capabilities 

of each model, aiding in the evaluation and selection of the 

most suitable approach for water segmentation tasks. Table 

2 presents a segmentation comparison of various models, 

employing ResNet50 as the backbone. The table showcases 

key performance metrics, including Dice coefficient, 

sensitivity, and precision, offering insights into the models' 

efficacy in accurately segmenting water regions within the 

flood area dataset. FCN32 demonstrates a Dice coefficient 

of 0.690±0.0025, sensitivity of 0.68±0.0024, and precision 

of 0.77±0.033. U-Net exhibits superior performance with a 

Dice coefficient of 0.79±0.0038, sensitivity of 

0.73±0.0027, and precision of 0.850±0.0034. SegNet 

continues to excel with a Dice coefficient of 0.84±0.0042, 

sensitivity of 0.80±0.0062, and precision of 0.88±0.039. 

These comprehensive metrics aid in the evaluation and 

comparison of the models, guiding the selection of the most 

suitable approach for effective water segmentation tasks 

using ResNet50 as the underlying architecture. 

4.4. Statistical analysis 

To assess potential statistically significant differences in 

segmentation performance metrics (Precision, Recall, and 

Dice) among the models, we can employ statistical 

techniques like Analysis of Variance (ANOVA), designed 

for simultaneous comparison of multiple groups. ANOVA 

allows exploration into whether meaningful disparities 

exist within the means of different models. The p-values 

derived from ANOVA serve as indicators to ascertain if 

significant variations exist among the models for each 

metric. If the p-values fall below a predetermined 

significance threshold (e.g., 0.05), it leads to the conclusion 

that indeed significant differences exist among the models. 

The outcomes of the analysis of variance (ANOVA) 

reveal noteworthy p-values, indicating substantial 

differences among the models across all three metrics: 

Precision, Recall, and Dice. Specifically, the p-value for 

Precision is 3.9e-03, signifying a significant divergence in 

accuracy among the models. Similarly, the Recall metric 

yields a p-value of 4.4e-03, reaffirming a significant 

difference in precision across the models. Additionally, the 

Dice metric exhibits a small p-value of 5.4e-04, 

emphasizing a notable variance in recall among the 

models. In summary, the statistical analysis underscores 
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Fig. 3. Segmentation results of FCN, U-Net, and SegNet 

 

Table 1  

Segmentation comparison of the different models: VGG19 as backbone 
 

Model Dice Sensitivity Precision 

FCN32 0.671±0.0027 0.652±0.0038 0.74±0.028 

U-Net 0.75±0.0027 0.71±0.0019 0.821±0.0010 

SegNet 0.810±0.0026 0.77±0.0070 0.85±0.054 

 

Table 2  

Segmentation comparison of the different models: ResNet50 as backbone 
 

Model Dice Sensitivity Precision 

FCN32 0.690±0.0025 0.68±0.0024 0.77±0.033 

U-Net 0.79±0.0038 0.73±0.0027 0.850±0.0034 

SegNet 0.84±0.0042 0.80±0.0062 0.88±0.039 

Model Dice Sensitivity Precision 

FCN32 0.671±0.0027 0.652±0.0038 0.74±0.028 

U-Net 0.75±0.0027 0.71±0.0019 0.821±0.0010 

SegNet 0.810±0.0026 0.77±0.0070 0.85±0.054 

significant performance disparities among segmentation 

models across all metrics, underscoring the influential role 

of model selection in shaping classification performance. 

5. Conclusion 

In this study, deep-learning models explicitly designed 

for floodwater segmentation were thoroughly evaluated. 

Prominent deep learning architectures were employed, and 

their performance was meticulously assessed using diverse 

metrics, including Precision, Recall, and Dice. Valuable 

insights into the efficacy of these models in addressing the 

challenge of water segmentation were provided through 

our comprehensive analysis. SegNet emerged as the top 

performer, showcasing outstanding and consistent results 

across all metrics, highlighting its efficiency and 

effectiveness in accurately segmenting water. With a Dice 

coefficient of 0.84 and a precision of 0.88, SegNet excelled 

in minimizing false positives, a critical aspect of this 

application. Furthermore, a flawless recall score of 0.80 

was achieved, demonstrating SegNet's ability to accurately 

capture the majority of genuine water patches. 
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